skip to main content

This content will become publicly available on December 1, 2022

Title: Microfluidic guillotine reveals multiple timescales and mechanical modes of wound response in Stentor coeruleus
Abstract Background Wound healing is one of the defining features of life and is seen not only in tissues but also within individual cells. Understanding wound response at the single-cell level is critical for determining fundamental cellular functions needed for cell repair and survival. This understanding could also enable the engineering of single-cell wound repair strategies in emerging synthetic cell research. One approach is to examine and adapt self-repair mechanisms from a living system that already demonstrates robust capacity to heal from large wounds. Towards this end, Stentor coeruleus , a single-celled free-living ciliate protozoan, is a unique model because of its robust wound healing capacity. This capacity allows one to perturb the wounding conditions and measure their effect on the repair process without immediately causing cell death, thereby providing a robust platform for probing the self-repair mechanism. Results Here we used a microfluidic guillotine and a fluorescence-based assay to probe the timescales of wound repair and of mechanical modes of wound response in Stentor . We found that Stentor requires ~ 100–1000 s to close bisection wounds, depending on the severity of the wound. This corresponds to a healing rate of ~ 8–80 μm 2 /s, faster than most other single cells reported more » in the literature. Further, we characterized three distinct mechanical modes of wound response in Stentor : contraction, cytoplasm retrieval, and twisting/pulling. Using chemical perturbations, active cilia were found to be important for only the twisting/pulling mode. Contraction of myonemes, a major contractile fiber in Stentor , was surprisingly not important for the contraction mode and was of low importance for the others. Conclusions While events local to the wound site have been the focus of many single-cell wound repair studies, our results suggest that large-scale mechanical behaviors may be of greater importance to single-cell wound repair than previously thought. The work here advances our understanding of the wound response in Stentor and will lay the foundation for further investigations into the underlying components and molecular mechanisms involved. « less
; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
BMC Biology
Sponsoring Org:
National Science Foundation
More Like this
  1. Human and murine skin wounding commonly results in fibrotic scarring, but the murine wounding model wound-induced hair neogenesis (WIHN) can frequently result in a regenerative repair response. Here, we show in single-cell RNA sequencing comparisons of semi-regenerative and fibrotic WIHN wounds, increased expression of phagocytic/lysosomal genes in macrophages associated with predominance of fibrotic myofibroblasts in fibrotic wounds. Investigation revealed that macrophages in the late wound drive fibrosis by phagocytizing dermal Wnt inhibitor SFRP4 to establish persistent Wnt activity. In accordance, phagocytosis abrogation resulted in transient Wnt activity and a more regenerative healing. Phagocytosis of SFRP4 was integrin-mediated and dependent on the interaction of SFRP4 with the EDA splice variant of fibronectin. In the human skin condition hidradenitis suppurativa, phagocytosis of SFRP4 by macrophages correlated with fibrotic wound repair. These results reveal that macrophages can modulate a key signaling pathway via phagocytosis to alter the skin wound healing fate.
  2. Split thickness skin grafts (STSGs) are one of the standard treatments available for full thickness wound repair when full thickness grafts (FTGs) are not viable, such as in the case of wounds with large surface areas. The donor sites of STSGs may be harvested repeatedly, but STSG transplants are still limited by insufficient blood supply at the early stages of wound healing. Prevascularized human mesenchymal stem cell (hMSC) sheets may accelerate wound healing and improve regeneration by providing pre-formed vessel structures and angiogenic factors to overcome this limitation. This book chapter provides the protocol of co-culturing hMSCs and endothelial cells to attain a prevascularized hMSC cell sheet (PHCS). The protocols for implantation of the prevascularized stem cell sheet for full thickness skin wound repair in a rat autologous skin graft model as well as the evaluation of the wound healing effects are also provided.
  3. Zwitterionic hydrogels, as highly hydrated and soft materials, have been considered as promising materials for wound dressing, due to their unique antifouling and mechanical properties. While the viscoelasticity and softness of zwitterionic hydrogels are hypothetically essential for creating adaptive cellular niches, the underlying mechanically regulated wound healing mechanism still remains elusive. To test this hypothesis, we fabricated zwitterionic poly(sulfobetaine methacrylate) (polySBMA) hydrogels with different elastic moduli prepared at different crosslinker contents, and then applied the hydrogels to full-thickness cutaneous wounds in mice. In vivo wound healing studies compared the mechanical cue-induced effects of soft and stiff polySBMA hydrogels on wound closure rates, granulation tissue formation and collagen deposition. Collective results showed that the softer and more viscoelastic hydrogels facilitated cell proliferation, granulation formation, collagen aggregation, and chondrogenic ECM deposition. Such high wound healing efficiency by the softer hydrogels is likely attributed to stress dissipation by expanding the cell proliferation, the up-regulation of blood vessel formation, and the enhanced polarization of M2/M1 macrophages, both of which would provide more oxygen and nutrients for cell proliferation and migration, leading to enhanced wound repair. This work not only reveals a mechanical property–wound healing relationship of zwitterionic polySBMA hydrogels, but also provides a promisingmore »candidate and strategy for the next-generation of wound dressings.« less
  4. Mechanical properties of the extracellular matrix are important determinants of cellular migration in diverse processes, such as immune response, wound healing, and cancer metastasis. Moreover, recent studies indicate that even bacterial surface colonization can depend on the mechanics of the substrate. Here, we focus on physical mechanisms that can give rise to substrate-rigidity dependent migration. We study a “twitcher”, a cell driven by extension–retraction cycles, to idealize bacteria and perhaps eukaryotic cells that employ a slip-stick mode of motion. The twitcher is asymmetric and always pulls itself forward at its front. Analytical calculations show that the migration speed of a twitcher depends non-linearly on substrate rigidity. For soft substrates, deformations do not lead to build-up of significant force and the migration speed is therefore determined by stochastic adhesion unbinding. For rigid substrates, forced adhesion rupture determines the migration speed. Depending on the force-sensitivity of front and rear adhesions, forced bond rupture implies an increase or a decrease of the migration speed. A requirement for the occurrence of rigidity-dependent stick-slip migration is a “sticky” substrate, with binding rates being an order of magnitude larger than unbinding rates in absence of force. Computer simulations show that small stall forces of the drivingmore »machinery lead to a reduced movement on high rigidities, regardless of force-sensitivities of bonds. The simulations also confirm the occurrence of rigidity-dependent migration speed in a generic model for slip-stick migration of cells on a sticky substrate.« less
  5. By definition of multicellularity, all animals need to keep their cells attached and intact, despite internal and external forces. Cohesion between epithelial cells provides this key feature. To better understand fundamental limits of this cohesion, we study the epithelium mechanics of an ultrathin (∼25 μm) primitive marine animalTrichoplax adhaerens, composed essentially of two flat epithelial layers. With no known extracellular matrix and no nerves or muscles,T. adhaerenshas been claimed to be the “simplest known living animal,” yet is still capable of coordinated locomotion and behavior. Here we report the discovery of the fastest epithelial cellular contractions known in any metazoan, to be found inT. adhaerensdorsal epithelium (50% shrinkage of apical cell area within one second, at least an order of magnitude faster than other known examples). Live imaging reveals emergent contractile patterns that are mostly sporadic single-cell events, but also include propagating contraction waves across the tissue. We show that cell contraction speed can be explained by current models of nonmuscle actin–myosin bundles without load, while the tissue architecture and unique mechanical properties are softening the tissue, minimizing the load on a contracting cell. We propose a hypothesis, in which the physiological role of the contraction dynamics is to resistmore »external stresses while avoiding tissue rupture (“active cohesion”), a concept that can be further applied to engineering of active materials.

    « less