skip to main content


Title: Four-Element Wide Modulated Bandwidth MIMO Receiver With >35-dB Interference Cancellation
Active control of interference is necessary with increased cell density, more complicated environmental reflections, and coexistence of multiple networks for next-generation wireless communications. The existing radio receiver architectures for spatial interference cancellation (SpICa) are limited by the spatial nulls created by a phased-antenna array (PAA) and cannot cover wide modulated bandwidths (BWs). We propose a discrete-time-delay-compensating technique for canceling spatial interferences with wide modulated BWs to reduce the dynamic range requirement for the data converter. Integral to the proposed circuit is a switched-capacitor-based multiply-and-accumulate processor that incorporates a reconfigurable phase interpolator and time interleaver for precise digitally tunable delays and multiplication of the input signal to an orthogonal matrix. The digital time interleaver enables 5-ps resolution with a reconfigurable range up to 15 ns. The measured results demonstrate greater than 35-dB SpICa over 80-MHz modulated BWs in the 65-nm CMOS with 52 mW of power consumption.  more » « less
Award ID(s):
1705026 1955306
NSF-PAR ID:
10146886
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
IEEE Transactions on Microwave Theory and Techniques
ISSN:
0018-9480
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Precise control of a material's emissivity is critical for thermal‐engineering applications. Metamaterials, which derive their optical properties from sub‐wavelength structures, have emerged as a promising way to tune emissivity over a wide parameter space. However, metamaterial designs have not yet achieved simultaneous spatial and temporal control of emissivity, which is important for advanced engineering applications such as adaptive thermal management and reconfigurable infrared camouflage. Here, spatiotemporal emissivity control is demonstrated by designing and fabricating a large‐area, infrared metamaterial that is modulated with ultraviolet (UV) light. The UV light generates free carriers in a photosensitive ZnO spacer layer, which changes the metamaterial optical properties and causes a localized increase in emissivity. Thermal imaging of the metamaterial during UV illumination reveals an apparent temperature increase as a result of the emissivity change. The imaged temperature fluctuation is recorded under exposure from a temporally modulated and spatially patterned UV illumination source to characterize both the temporal response and spatial resolution of the emissivity change. The results of this work demonstrate new capabilities for thermal metamaterials that could bring about the next generation of thermal‐engineering devices.

     
    more » « less
  2. Sekercioglu, C. ; Meynard, C.N. (Ed.)
    As species’ ranges shift in response to human-induced global changes, species interac- tions are expected to play a large role in shaping the resultant range dynamics and, subsequently, the composition of modified species assemblages. Most research on the impact of species interactions on range dynamics focuses on the effects of trophic interactions and exploitative competition for resources, but an emerging body of work shows that interspecific competition for territories and mates also affects species range shifts. As such, it is paramount to build a strong understanding of how these forms of behavioural interference between species impact landscape-scale patterns. Here, we examine recent (1997–2019) range dynamics of North American passerines to test the hypothesis that behavioural interference impacts the ease with which species move across landscapes. Over this 22 year period, we found that fine-scale spatial overlap between species (syntopy) increased more for species pairs that engage in interspecific territoriality than for those that do not. We found no evidence, however, for an effect of reproductive interference (hybridisation) on syntopy, and no effect of either type of interference on range-wide overlap (sympatry). Examining the net effects of species interactions on continent-scale range shifts may require species occurrence data span- ning longer time periods than are currently available for North American passerines, but our results show that interspecific territoriality has had an overall stabilising influ- ence on species coexistence over the past two decades. 
    more » « less
  3. Many important applications in the extreme environment require wireless communications to connect smart devices. Metamaterial-enhanced magnetic induction (M2I) has been proposed as a promising solution thanks to its long communication range in the lossy medium. M$^2$I communication relies on magnetic coupling, which makes it intrinsically full-duplex without self-interference. Moreover, the engineered active metamaterial provides reconfigurability in communication range and interference. In this paper, the new networking paradigm based on the reconfigurable and full-duplex M2I communication technique is investigated. In particular, the theoretical analysis and electromagnetic simulation are first provided to prove the feasibility. Then, a medium access control protocol is proposed to avoid collisions. Finally, the capacity and delay of the full-duplex M2I network are derived to show the advantage of the new networking paradigm. The analysis in this paper indicates that in a full-duplex M2I network, the distance between the source and destination can be arbitrarily long and the end-to-end delay can be as short as a single hop delay. As a result, each node in such network can reach any other node by one hop, which can greatly enhance the network robustness and efficiency. It is important for timely transmission of emergent information or real-time control signals. 
    more » « less
  4. Abstract

    We report a novel approach for realizing tunable/reconfigurable terahertz (THz) mesh filters on the basis of micromachined mesa‐array structures. In this approach, different filter patterns are generated virtually using photogenerated free carriers in a semiconducting mesa‐array structure to achieve superior tunability and reconfigurability. Micromachined mesa‐array structures enable the formation of high fidelity, optically generated mesh filter structures for THz frequencies. To evaluate the proposed filter designs, the optically patterned spatial modulation properties of mesa‐array structures were first evaluated. Reconfigurable mesh filter prototypes were then designed and simulated using silicon mesa arrays with 50 × 50 μm2square mesa unit cells. Simulations show that reconfigurable bandpass filters (BPFs) operating in the frequency range of 108–489 GHz with insertion losses of 0.82–1.13 dB can be achieved. By employing smaller unit cells, the frequency tuning range and filtering performance can be further improved. In addition to BPFs, other filter functionalities can also be realized utilizing the proposed approach. The wide tuning range and reconfigurability of the mesh filters demonstrate that the proposed approach is promising for developing tunable/reconfigurable circuits and components for advanced THz sensing, imaging, and communications.

     
    more » « less
  5. The incorporation of digital modulation into radar systems poses various challenges in the field of radar design, but it also offers a potential solution to the shrinking availability of low-noise operating environments as the number of radar applications increases. Additionally, digital systems have reached a point where available components and technology can support higher speeds than ever before. These advancements present new avenues for radar design, in which digitally controlled phase-modulated continuous wave (PMCW) radar systems can look to support multiple collocated radar systems with low radar-radar interference. This paper proposes a reconfigurable PMCW radar for use in vital sign detection and gesture recognition while utilizing digital carrier modulation and compares the radar responses of various modulation schemes. Binary sequences are used to introduce phase modulation to the carrier wave by use of a field programable gate array (FPGA), allowing for flexibility in the modulation speed and binary sequence. Experimental results from the radar demonstrate the differences between CW and PMCW modes when measuring the respiration rate of a human subject and in gesture detection. 
    more » « less