skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Four-Element Wide Modulated Bandwidth MIMO Receiver With >35-dB Interference Cancellation
Active control of interference is necessary with increased cell density, more complicated environmental reflections, and coexistence of multiple networks for next-generation wireless communications. The existing radio receiver architectures for spatial interference cancellation (SpICa) are limited by the spatial nulls created by a phased-antenna array (PAA) and cannot cover wide modulated bandwidths (BWs). We propose a discrete-time-delay-compensating technique for canceling spatial interferences with wide modulated BWs to reduce the dynamic range requirement for the data converter. Integral to the proposed circuit is a switched-capacitor-based multiply-and-accumulate processor that incorporates a reconfigurable phase interpolator and time interleaver for precise digitally tunable delays and multiplication of the input signal to an orthogonal matrix. The digital time interleaver enables 5-ps resolution with a reconfigurable range up to 15 ns. The measured results demonstrate greater than 35-dB SpICa over 80-MHz modulated BWs in the 65-nm CMOS with 52 mW of power consumption.  more » « less
Award ID(s):
1705026 1955306
PAR ID:
10146886
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
IEEE Transactions on Microwave Theory and Techniques
ISSN:
0018-9480
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We report a novel approach for realizing tunable/reconfigurable terahertz (THz) mesh filters on the basis of micromachined mesa‐array structures. In this approach, different filter patterns are generated virtually using photogenerated free carriers in a semiconducting mesa‐array structure to achieve superior tunability and reconfigurability. Micromachined mesa‐array structures enable the formation of high fidelity, optically generated mesh filter structures for THz frequencies. To evaluate the proposed filter designs, the optically patterned spatial modulation properties of mesa‐array structures were first evaluated. Reconfigurable mesh filter prototypes were then designed and simulated using silicon mesa arrays with 50 × 50 μm2square mesa unit cells. Simulations show that reconfigurable bandpass filters (BPFs) operating in the frequency range of 108–489 GHz with insertion losses of 0.82–1.13 dB can be achieved. By employing smaller unit cells, the frequency tuning range and filtering performance can be further improved. In addition to BPFs, other filter functionalities can also be realized utilizing the proposed approach. The wide tuning range and reconfigurability of the mesh filters demonstrate that the proposed approach is promising for developing tunable/reconfigurable circuits and components for advanced THz sensing, imaging, and communications. 
    more » « less
  2. Sekercioglu, C.; Meynard, C.N. (Ed.)
    As species’ ranges shift in response to human-induced global changes, species interac- tions are expected to play a large role in shaping the resultant range dynamics and, subsequently, the composition of modified species assemblages. Most research on the impact of species interactions on range dynamics focuses on the effects of trophic interactions and exploitative competition for resources, but an emerging body of work shows that interspecific competition for territories and mates also affects species range shifts. As such, it is paramount to build a strong understanding of how these forms of behavioural interference between species impact landscape-scale patterns. Here, we examine recent (1997–2019) range dynamics of North American passerines to test the hypothesis that behavioural interference impacts the ease with which species move across landscapes. Over this 22 year period, we found that fine-scale spatial overlap between species (syntopy) increased more for species pairs that engage in interspecific territoriality than for those that do not. We found no evidence, however, for an effect of reproductive interference (hybridisation) on syntopy, and no effect of either type of interference on range-wide overlap (sympatry). Examining the net effects of species interactions on continent-scale range shifts may require species occurrence data span- ning longer time periods than are currently available for North American passerines, but our results show that interspecific territoriality has had an overall stabilising influ- ence on species coexistence over the past two decades. 
    more » « less
  3. This article presents a new notch steering scheme for hybrid beamforming transmitters (TXs) aimed at suppressing spatial interference, thereby enhancing the signal-to-interference-plus-noise ratio (SINR) to support spatial multiplexing. Built upon existing phased arrays, this scheme integrates an auxiliary-path vector modulator (VM) into each antenna element, which in turn, forms an interference-canceling beam. By spatially combining the array factors (AFs) of the main beam and the interference-canceling beam, a deep spatial notch is created while ensuring minimal main-beam power degradation. Unlike the conventional zero-forcing method that requires matrix inversion in digital for spatial notch creation, our scheme enables the computation of antenna weights in analog, significantly reducing the computational cost and latency. Leveraging this new notch steering scheme, we develop a 28-GHz four-element fully connected (FC) hybrid beamforming TX array using the GlobalFoundries 45-nm CMOS Silicon-on-Insulator (SOI) process. It is capable of simultaneously transmitting two independent, wideband data streams (DSs) in the same polarization toward two directions. In probing-based measurements, each TX channel delivers 19.7-dBm OP1 dB, 20.4-dBm PSAT , and 30.6% peak power-added efficiency (PAE) at 29 GHz, demonstrating state-of-the-art TX linearity and efficiency. In over-the-air (OTA) measurements, the packaged TX array achieves 29.8-dBm EIRP1 dB and is able to steer a spatial notch outside the −10-dB beamwidth of the main beam, with a notch depth of >35 dB and a main-beam power degradation of < 0.8 dB. Moreover, in spatial multiplexing demonstrations, the TX array is capable of transmitting a 400-MHz 64-quadrature amplitude modulation (QAM) signal to the intended receiver (RX) in the first DS, while suppressing the co-channel continuous-wave or wideband modulated interference created by the second DS with a high SINR. 
    more » « less
  4. Radio frequency interference (RFI) in a devastating problem for high-sensitivity phased arrays. This paper explores a method of mitigating RFI in a receiving array using a combination of true-time delay with a truncated Hadamard projection that can place a wide-band spatial null over the RFI. The operations involved can be performed with analog circuity before sampling for the digital signal processing engine in order to enhance dynamic range. The modified beamformer solution is briefly derived and performance is compared to the existing maximum SINR beamformer using analytical phasor domain models. The results show successful null placement at the expense of control of the main lobe shape and side lobe levels. 
    more » « less
  5. Many important applications in the extreme environment require wireless communications to connect smart devices. Metamaterial-enhanced magnetic induction (M2I) has been proposed as a promising solution thanks to its long communication range in the lossy medium. M$^2$I communication relies on magnetic coupling, which makes it intrinsically full-duplex without self-interference. Moreover, the engineered active metamaterial provides reconfigurability in communication range and interference. In this paper, the new networking paradigm based on the reconfigurable and full-duplex M2I communication technique is investigated. In particular, the theoretical analysis and electromagnetic simulation are first provided to prove the feasibility. Then, a medium access control protocol is proposed to avoid collisions. Finally, the capacity and delay of the full-duplex M2I network are derived to show the advantage of the new networking paradigm. The analysis in this paper indicates that in a full-duplex M2I network, the distance between the source and destination can be arbitrarily long and the end-to-end delay can be as short as a single hop delay. As a result, each node in such network can reach any other node by one hop, which can greatly enhance the network robustness and efficiency. It is important for timely transmission of emergent information or real-time control signals. 
    more » « less