skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Identification of the Bacterial Biosynthetic Gene Clusters of the Oral Microbiome Illuminates the Unexplored Social Language of Bacteria during Health and Disease
ABSTRACT Small molecules are the primary communication media of the microbial world. Recent bioinformatic studies, exploring the biosynthetic gene clusters (BGCs) which produce many small molecules, have highlighted the incredible biochemical potential of the signaling molecules encoded by the human microbiome. Thus far, most research efforts have focused on understanding the social language of the gut microbiome, leaving crucial signaling molecules produced by oral bacteria and their connection to health versus disease in need of investigation. In this study, a total of 4,915 BGCs were identified across 461 genomes representing a broad taxonomic diversity of oral bacteria. Sequence similarity networking provided a putative product class for more than 100 unclassified novel BGCs. The newly identified BGCs were cross-referenced against 254 metagenomes and metatranscriptomes derived from individuals either with good oral health or with dental caries or periodontitis. This analysis revealed 2,473 BGCs, which were differentially represented across the oral microbiomes associated with health versus disease. Coabundance network analysis identified numerous inverse correlations between BGCs and specific oral taxa. These correlations were present in healthy individuals but greatly reduced in individuals with dental caries, which may suggest a defect in colonization resistance. Finally, corroborating mass spectrometry identified several compounds with homology to products of the predicted BGC classes. Together, these findings greatly expand the number of known biosynthetic pathways present in the oral microbiome and provide an atlas for experimental characterization of these abundant, yet poorly understood, molecules and socio-chemical relationships, which impact the development of caries and periodontitis, two of the world’s most common chronic diseases. IMPORTANCE The healthy oral microbiome is symbiotic with the human host, importantly providing colonization resistance against potential pathogens. Dental caries and periodontitis are two of the world’s most common and costly chronic infectious diseases and are caused by a localized dysbiosis of the oral microbiome. Bacterially produced small molecules, often encoded by BGCs, are the primary communication media of bacterial communities and play a crucial, yet largely unknown, role in the transition from health to dysbiosis. This study provides a comprehensive mapping of the BGC repertoire of the human oral microbiome and identifies major differences in health compared to disease. Furthermore, BGC representation and expression is linked to the abundance of particular oral bacterial taxa in health versus dental caries and periodontitis. Overall, this study provides a significant insight into the chemical communication network of the healthy oral microbiome and how it devolves in the case of two prominent diseases.  more » « less
Award ID(s):
1656006
PAR ID:
10147081
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
mBio
Volume:
10
Issue:
2
ISSN:
2150-7511
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Poor oral health is associated with cardiovascular disease and dementia. Potential pathways include sepsis from oral bacteria, systemic inflammation, and nutritional deficiencies. However, in post-industrialized populations, links between oral health and chronic disease may be confounded because the lower socioeconomic exposome (poor diet, pollution, and low physical activity) often entails insufficient dental care. We assessed tooth loss, caries, and damaged teeth, in relation to cardiovascular and brain aging among the Tsimane, a subsistence population living a relatively traditional forager-horticulturalist lifestyle with poor dental health, but minimal cardiovascular disease and dementia. Dental health was assessed by a physician in 739 participants aged 40–92 years with cardiac and brain health measured by chest computed tomography (CT; n = 728) and brain CT (n = 605). A subset of 356 individuals aged 60+ were also assessed for dementia and mild cognitive impairment (n = 33 impaired). Tooth loss was highly prevalent, with 2.2 teeth lost per decade and a 2-fold greater loss in women. The number of teeth with exposed pulp was associated with higher inflammation, as measured by cytokine levels and white blood cell counts, and lower body mass index. Coronary artery calcium and thoracic aortic calcium were not associated with tooth loss or damaged teeth. However, aortic valve calcification and brain tissue loss were higher in those who had more teeth with exposed pulp. Overall, these results suggest that dental health is associated with indicators of chronic diseases in the absence of typical confounds, even in a population with low cardiovascular and dementia risk factors.

     
    more » « less
  2. Abstract

    Periodontitis is a chronic infection where abnormal host‐microbiota interactions alter the oral microbiome, trigger a proinflammatory immune response, and cause inflammatory alveolar bone loss. While antibiotics are occasionally necessary for treating periodontitis, their use must be carefully managed to prevent the development of drug resistance and oral dysbiosis. Therefore, it's crucial to develop new treatment strategies for periodontitis that reduce antibiotic dependence while effectively controlling the inflammation triggered by bacteria. In this study, a hydrogel is engineered by grafting cationic polyamidoamine dendrimers (PAMAM‐G3) onto the oxidized carboxymethyl cellulose (OCMC) backbone, resulting in an injectable cationic hydrogel (OCMC‐PAMAM‐G3, O‐P). This hydrogel can capture anionic microbial‐associated molecular patterns (MAMPs), such as lipopolysaccharides (LPS) and cell‐free DNA (cfDNA). These findings reveal that using O‐P application circumvents the disruption of the oral mucosa microbiome caused by traditional antibiotics. Additionally, this hydrogel can mitigate inflammatory alveolar bone loss in a ligature‐induced periodontitis mouse model by alleviating the LPS/cfDNA‐TLR4/9 pathway. Moreover, topical administration of O‐P hydrogel has no significant adverse effects on the oral mucosa microbiome while improving the local subgingival microbiome. The study highlights a strategy targeting MAMPs while avoiding antibiotics, as it can mitigate the bacteria‐triggered proinflammatory immune response and potentially preserve oral dysbiosis.

     
    more » « less
  3. Osiński, Marek ; Kanaras, Antonios G. (Ed.)
    Periodontal diseases are prevalent worldwide and are linked to numerous other health conditions due to dysbiosis and chronic inflammatory state. Most periodontal diseases are caused by pathogenic bacteria that colonize dental tissues in the form of biofilm. Eradication of bacterial biofilms can be difficult to achieve due to the complex architecture of the teeth and gums which complicates the removal. Orthodontic wires and dental devices introduce additional hurdles to the adequate removal of biofilms by traditional methods since mechanical disruption via direct contact with toothbrush bristles, floss, and abrasive toothpaste is limited. Magnetically activated nanoparticles (NPs), specifically iron oxide nanoparticles (IONPs) that can be functionalized as antimicrobial particles and remotely controlled by magnetic fields, are of interest for oral biofilm eradication. We present data in multi-species bacterial cultures, established biofilms, human gingival keratinocytes, and human gingival fibroblast cells alone and in the presence of multispecies biofilm co-cultures to determine the safest, most efficacious IONP size ranges and treatment concentrations of active magnetic NPs for removal of dental biofilms. We report enhanced efficacy for IONPs coated with alginate vs. dextran, and small sizes (~8 nm vs. >20 nm in size) appear to exhibit enhanced antimicrobial efficacy. Human gingival keratinocyte (TIGK) cells in co-culture with treated and untreated multispecies biofilms in an in-vitro periodontitis model also exhibited a trend of reduced inflammatory markers in wells with IONP-treated biofilms. 
    more » « less
  4. Abstract Objectives

    Limited studies have focused on how European contact and colonialism impacted Native American oral microbiomes, specifically, the diversity of commensal or opportunistically pathogenic oral microbes, which may be associated with oral diseases. Here, we studied the oral microbiomes of pre‐contact Wichita Ancestors, in partnership with the Descendant community, The Wichita and Affiliated Tribes, Oklahoma, USA.

    Materials and Methods

    Skeletal remains of 28 Wichita Ancestors from 20 archeological sites (dating approximately to 1250–1450 CE) were paleopathologically assessed for presence of dental calculus and oral disease. DNA was extracted from calculus, and partial uracil deglycosylase‐treated double‐stranded DNA libraries were shotgun‐sequenced using Illumina technology. DNA preservation was assessed, the microbial community was taxonomically profiled, and phylogenomic analyzes were conducted.

    Results

    Paleopathological analysis revealed signs of oral diseases such as caries and periodontitis. Calculus samples from 26 Ancestors yielded oral microbiomes with minimal extraneous contamination. Anaerolineaceae bacterium oral taxon 439 was found to be the most abundant bacterial species. Several Ancestors showed high abundance of bacteria typically associated with periodontitis such asTannerella forsythiaandTreponema denticola. Phylogenomic analyzes of Anaerolineaceae bacterium oral taxon 439 andT. forsythiarevealed biogeographic structuring; strains present in the Wichita Ancestors clustered with strains from other pre‐contact Native Americans and were distinct from European and/or post‐contact American strains.

    Discussion

    We present the largest oral metagenome dataset from a pre‐contact Native American population and demonstrate the presence of distinct lineages of oral microbes specific to the pre‐contact Americas.

     
    more » « less
  5. null (Ed.)
    Human microbiome studies are increasingly incorporating macroecological approaches, such as community assembly, network analysis and functional redundancy to more fully characterize the microbiome. Such analyses have not been applied to ancient human microbiomes, preventing insights into human microbiome evolution. We address this issue by analysing published ancient microbiome datasets: coprolites from Rio Zape ( n = 7; 700 CE Mexico) and historic dental calculus ( n = 44; 1770–1855 CE, UK), as well as two novel dental calculus datasets: Maya ( n = 7; 170 BCE-885 CE, Belize) and Nuragic Sardinians ( n = 11; 1400–850 BCE, Italy). Periodontitis-associated bacteria ( Treponema denticola , Fusobacterium nucleatum and Eubacterium saphenum ) were identified as keystone taxa in the dental calculus datasets. Coprolite keystone taxa included known short-chain fatty acid producers ( Eubacterium biforme, Phascolarctobacterium succinatutens ) and potentially disease-associated bacteria ( Escherichia , Brachyspira) . Overlap in ecological profiles between ancient and modern microbiomes was indicated by similarity in functional response diversity profiles between contemporary hunter–gatherers and ancient coprolites, as well as parallels between ancient Maya, historic UK, and modern Spanish dental calculus; however, the ancient Nuragic dental calculus shows a distinct ecological structure. We detected key ecological signatures from ancient microbiome data, paving the way to expand understanding of human microbiome evolution. This article is part of the theme issue ‘Insights into health and disease from ancient biomolecules’. 
    more » « less