skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: A probabilistic graphical model for system-wide analysis of gene regulatory networks
Abstract Motivation The inference of gene regulatory networks (GRNs) from DNA microarray measurements forms a core element of systems biology-based phenotyping. In the recent past, numerous computational methodologies have been formalized to enable the deduction of reliable and testable predictions in today’s biology. However, little focus has been aimed at quantifying how well existing state-of-the-art GRNs correspond to measured gene-expression profiles. Results Here, we present a computational framework that combines the formulation of probabilistic graphical modeling, standard statistical estimation, and integration of high-throughput biological data to explore the global behavior of biological systems and the global consistency between experimentally verified GRNs and corresponding large microarray compendium data. The model is represented as a probabilistic bipartite graph, which can handle highly complex network systems and accommodates partial measurements of diverse biological entities, e.g. messengerRNAs, proteins, metabolites and various stimulators participating in regulatory networks. This method was tested on microarray expression data from the M3D database, corresponding to sub-networks on one of the best researched model organisms, Escherichia coli. Results show a surprisingly high correlation between the observed states and the inferred system’s behavior under various experimental conditions. Availability and implementation Processed data and software implementation using Matlab are freely available at https://github.com/kotiang54/PgmGRNs. Full dataset available from the M3D database.  more » « less
Award ID(s):
1656006
NSF-PAR ID:
10147090
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Bioinformatics
ISSN:
1367-4803
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Motivation

    Gene regulatory networks (GRNs) in a cell provide the tight feedback needed to synchronize cell actions. However, genes in a cell also take input from, and provide signals to other neighboring cells. These cell–cell interactions (CCIs) and the GRNs deeply influence each other. Many computational methods have been developed for GRN inference in cells. More recently, methods were proposed to infer CCIs using single cell gene expression data with or without cell spatial location information. However, in reality, the two processes do not exist in isolation and are subject to spatial constraints. Despite this rationale, no methods currently exist to infer GRNs and CCIs using the same model.

    Results

    We propose CLARIFY, a tool that takes GRNs as input, uses them and spatially resolved gene expression data to infer CCIs, while simultaneously outputting refined cell-specific GRNs. CLARIFY uses a novel multi-level graph autoencoder, which mimics cellular networks at a higher level and cell-specific GRNs at a deeper level. We applied CLARIFY to two real spatial transcriptomic datasets, one using seqFISH and the other using MERFISH, and also tested on simulated datasets from scMultiSim. We compared the quality of predicted GRNs and CCIs with state-of-the-art baseline methods that inferred either only GRNs or only CCIs. The results show that CLARIFY consistently outperforms the baseline in terms of commonly used evaluation metrics. Our results point to the importance of co-inference of CCIs and GRNs and to the use of layered graph neural networks as an inference tool for biological networks.

    Availability and implementation

    The source code and data is available at https://github.com/MihirBafna/CLARIFY.

     
    more » « less
  2. Inferring gene regulatory networks (GRNs) from single-cell gene expression datasets is a challenging task. Existing methods are often designed heuristically for specific datasets and lack the flexibility to incorporate additional information or compare against other algorithms. Further, current GRN inference methods do not provide uncertainty estimates with respect to the interactions that they predict, making inferred networks challenging to interpret. To overcome these challenges, we introduce Probabilistic Matrix Factorization for Gene Regulatory Network inference (PMF-GRN). PMF-GRN uses single-cell gene expression data to learn latent factors representing transcription factor activity as well as regulatory relationships between transcription factors and their target genes. This approach incorporates available experimental evidence into prior distributions over latent factors and scales well to single-cell gene expression datasets. By utilizing variational inference, we facilitate hyperparameter search for principled model selection and direct comparison to other generative models. To assess the accuracy of our method, we evaluate PMF-GRN using the model organisms Saccharomyces cerevisiae and Bacillus subtilis, benchmarking against database-derived gold standard interactions. We discover that, on average, PMF-GRN infers GRNs more accurately than current state-of-the-art single-cell GRN inference methods. Moreover, our PMF-GRN approach offers well-calibrated uncertainty estimates, as it performs gene regulatory network (GRN) inference in a probabilistic setting. These estimates are valuable for validation purposes, particularly when validated interactions are limited or a gold standard is incomplete. 
    more » « less
  3. Inferring gene regulatory networks (GRNs) from single-cell RNA-seq (scRNA-seq) data is an important computational question to find regulatory mechanisms involved in fundamental cellular processes. Although many computational methods have been designed to predict GRNs from scRNA-seq data, they usually have high false positive rates and none infer GRNs by directly using the paired datasets of case-versus-control experiments. Here we present a novel deep-learning-based method, named scTIGER, for GRN detection by using the co-differential relationships of gene expression profiles in paired scRNA-seq datasets. scTIGER employs cell-type-based pseudotiming, an attention-based convolutional neural network method and permutation-based significance testing for inferring GRNs among gene modules. As state-of-the-art applications, we first applied scTIGER to scRNA-seq datasets of prostate cancer cells, and successfully identified the dynamic regulatory networks of AR, ERG, PTEN and ATF3 for same-cell type between prostatic cancerous and normal conditions, and two-cell types within the prostatic cancerous environment. We then applied scTIGER to scRNA-seq data from neurons with and without fear memory and detected specific regulatory networks for BDNF, CREB1 and MAPK4. Additionally, scTIGER demonstrates robustness against high levels of dropout noise in scRNA-seq data.

     
    more » « less
  4. Background: Single-cell gene expression measurements offer opportunities in deriving mechanistic understanding of complex diseases, including cancer. However, due to the complex regulatory machinery of the cell, gene regulatory network (GRN) model inference based on such data still manifests significant uncertainty. Results:The goal of this paper is to develop optimal classification of single-cell trajectories accounting for potential model uncertainty. Partially-observed Boolean dynamical systems (POBDS) are used for modeling gene regulatory networks observed through noisy gene-expression data. We derive the exact optimal Bayesian classifier (OBC) for binary classification of single-cell trajectories. The application of the OBC becomes impractical for large GRNs, due to computational and memory requirements. To address this, we introduce a particle-based single-cell classification method that is highly scalable for large GRNs with much lower complexity than the optimal solution. Conclusion:The performance of the proposed particle-based method is demonstrated through numerical experiments using a POBDS model of the well-known T-cell large granular lymphocyte (T-LGL) leukemia network with noisy time-series gene-expression 
    more » « less
  5. Abstract Motivation

    Joint reconstruction of multiple gene regulatory networks (GRNs) using gene expression data from multiple tissues/conditions is very important for understanding common and tissue/condition-specific regulation. However, there are currently no computational models and methods available for directly constructing such multiple GRNs that not only share some common hub genes but also possess tissue/condition-specific regulatory edges.

    Results

    In this paper, we proposed a new graphic Gaussian model for joint reconstruction of multiple gene regulatory networks (JRmGRN), which highlighted hub genes, using gene expression data from several tissues/conditions. Under the framework of Gaussian graphical model, JRmGRN method constructs the GRNs through maximizing a penalized log likelihood function. We formulated it as a convex optimization problem, and then solved it with an alternating direction method of multipliers (ADMM) algorithm. The performance of JRmGRN was first evaluated with synthetic data and the results showed that JRmGRN outperformed several other methods for reconstruction of GRNs. We also applied our method to real Arabidopsis thaliana RNA-seq data from two light regime conditions in comparison with other methods, and both common hub genes and some conditions-specific hub genes were identified with higher accuracy and precision.

    Availability and implementation

    JRmGRN is available as a R program from: https://github.com/wenpingd.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less