skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Latent Network Summarization: Bridging Network Embedding and Summarization
Award ID(s):
1845491
PAR ID:
10147367
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
Page Range / eLocation ID:
987 to 997
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. Extractive text summarization aims at extract- ing the most representative sentences from a given document as its summary. To extract a good summary from a long text document, sen- tence embedding plays an important role. Re- cent studies have leveraged graph neural net- works to capture the inter-sentential relation- ship (e.g., the discourse graph) to learn con- textual sentence embedding. However, those approaches neither consider multiple types of inter-sentential relationships (e.g., semantic similarity & natural connection), nor model intra-sentential relationships (e.g, semantic & syntactic relationship among words). To ad- dress these problems, we propose a novel Mul- tiplex Graph Convolutional Network (Multi- GCN) to jointly model different types of rela- tionships among sentences and words. Based on Multi-GCN, we propose a Multiplex Graph Summarization (Multi-GraS) model for extrac- tive text summarization. Finally, we evaluate the proposed models on the CNN/DailyMail benchmark dataset to demonstrate the effec- tiveness of our method. 
    more » « less