skip to main content


Title: Diverse Developmental Responses to Warming Temperatures Underlie Changes in Flowering Phenologies
Climate change has resulted in increased temperature means across the globe. Many angiosperms flower earlier in response to rising temperature and the phenologies of these species are reasonably well predicted by models that account for spring (early growing season) and winter temperatures. Surprisingly, however, exceptions to the general pattern of precocious flowering are common. Many species either do not appear to respond or even delay flowering in, or following, warm growing seasons. Existing phenological models have not fully addressed such exceptions to the common association of advancing phenologies with warming temperatures. The phenological events that are typically recorded (e.g., onset of flowering) are but one phase in a complex developmental process that often begins one or more years previously, and flowering time may be strongly influenced by temperature over the entire multi-year course of flower development. We propose a series of models that explore effects of growing-season temperature increase on the multiple processes of flower development and how changes in development may impact the timing of anthesis. We focus on temperate forest trees, which are characterized by preformation, the initiation of flower primordia one or more years prior to anthesis. We then synthesize the literature on flower development to evaluate the models. Although fragmentary, the existing data suggest the potential for temperature to affect all aspects of flower development in woody perennials. But, even for relatively well studied taxa, the critical developmental responses that underlie phenological patterns are difficult to identify. Our proposed models explain the seemingly counter-intuitive observations that warmer growingseason temperatures delay flowering in many species. Future research might concentrate on taxa that do not appear to respond to temperature, or delay flowering in response to warm temperatures, to understand what processes contribute to this pattern.  more » « less
Award ID(s):
1655831
NSF-PAR ID:
10147387
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Integrative and comparative biology
Volume:
59
Issue:
3
ISSN:
1557-7023
Page Range / eLocation ID:
559–570
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Phenological studies often focus on relationships between flowering date and temperature or other environmental variables. Yet in species that preform flowers, anthesis is one stage of a lengthy developmental process, and effects of temperature on flower development in the year(s) before flowering are largely unknown.

    We investigated the effects of temperature during preformation on flower development inVaccinium vitis‐idaea. Using scanning electron microscopy, we established scores for developing primordia and examined effects of air temperature, depth of soil thaw, time of year and previous stage on development.

    Onset of flower initiation depends on soil thaw, and developmental change is greatest at early stages and during the warmest months. Regardless of temperature and time during the season, all basal floral primordia pause development at the same stage before whole‐plant dormancy.

    Once primordia are initiated, development does not appear to be influenced by air temperature differences within the range of variation among our sites. There may be strong endogenous flower‐level controls over development, particularly the stage at which morphogenesis ceases before dormancy. However, the strength of such internal controls in the face of continuing temperature extremes under a changing climate is unclear.

     
    more » « less
  2. PREMISE

    Shifting phenology in response to climate is one mechanism that can promote population persistence and geographic spread; therefore, species with limited ability to phenologically track changing environmental conditions may be more susceptible to population declines. Alternatively, apparently nonresponding species may demonstrate divergent responses to multiple environmental conditions experienced across seasons.

    METHODS

    Capitalizing on herbarium records from across the midwestern United States and on detailed botanical surveys documenting local extinctions over the past century, we investigated whether extirpated and extant taxa differ in their phenological responses to temperature and precipitation during winter and spring (during flowering and the growing season before flowering) or in the magnitude of their flowering time shift over the past century.

    RESULTS

    Although warmer temperatures across seasons advanced flowering, extirpated and extant species differed in the magnitude of their phenological responses to winter and spring warming. Extirpated species demonstrated inconsistent phenological responses to warmer spring temperatures, whereas extant species consistently advanced flowering in response to warmer spring temperatures. In contrast, extirpated species advanced flowering more than extant species in response to warmer winter temperatures. Greater spring precipitation tended to delay flowering for both extirpated and extant taxa. Finally, both extirpated and extant taxa delayed flowering over time.

    CONCLUSIONS

    This study highlights the importance of understanding phenological responses to seasonal warming and indicates that extirpated species may demonstrate more variable phenological responses to temperature than extant congeners, a finding consistent with the hypothesis that appropriate phenological responses may reduce species’ likelihood of extinction.

     
    more » « less
  3. Populations within species often exhibit variation in traits that reflect local adaptation and further shape existing adaptive potential for species to respond to climate change. However, our mechanistic understanding of how the environment shapes trait variation remains poor. Here, we used common garden experiments to quantify thermal performance in eight populations of the marine snail Urosalpinx cinerea across thermal gradients on the Atlantic and the Pacific coasts of North America. We then evaluated the relationship between thermal performance and environmental metrics derived from time-series data. Our results reveal a novel pattern of ‘mixed’ trait performance adaptation, where thermal optima were positively correlated with spawning temperature (cogradient variation), while maximum trait performance was negatively correlated with season length (countergradient variation). This counterintuitive pattern probably arises because of phenological shifts in the spawning season, whereby ‘cold’ populations delay spawning until later in the year when temperatures are warmer compared to ‘warm’ populations that spawn earlier in the year when temperatures are cooler. Our results show that variation in thermal performance can be shaped by multiple facets of the environment and are linked to organismal phenology and natural history. Understanding the impacts of climate change on organisms, therefore, requires the knowledge of how climate change will alter different aspects of the thermal environment. 
    more » « less
  4. Abstract Aim

    Phenology, the temporal response of a population to its climate, is a crucial behavioural trait shared across life on earth. How species adapt their phenologies to climate change is poorly understood but critical in understanding how species will respond to future change. We use a group of flies (Rhaphiomidas) endemic to the North American deserts to understand how species adapt to changing climatic conditions. Here, we explore a novel approach for taxa with constrained phenologies aimed to accurately model their environmental niche and relate this to phenological and morphological adaptations in a phylogenetic context.

    Taxon

    Insecta, Diptera, Mydidae,Rhaphiomidas.

    Location

    North America, Mojave, Sonoran and Chihuahuan Deserts.

    Methods

    We gathered geographical and phenological occurrence data for the entire genusRhaphiomidas, and, estimated a time calibrated phylogeny. We compared Daymet derived temperature values for a species adult occurrence period (phenology) with those derived from WorldClim data that is partitioned by month or quarter to examine what effect using more precise data has on capturing a species’ environmental niche. We then examined to what extent phylogenetic signal in phenological traits, climate tolerance and morphology can inform us about how species adapt to different environmental regimes.

    Results

    We found that the Bioclim temperature data, which are averages across monthly intervals, poorly represent the climate windows to which adult flies are actually adapted. Using temporally relevant climate data, we show that many species use a combination of morphological and phenological changes to adapt to different climate regimes. There are also instances where species changed only phenology to track a climate type or only morphology to adapt to different environments.

    Main Conclusions

    Without using a fine‐scale phenological data approach, identifying environmental adaptations could be misleading because the data do not represent the conditions the animals are actually experiencing. We find that fine‐scale phenological niche models are needed when assessing taxa that have a discrete phenological window that is key to their survival, accurately linking environment to morphology and phenology. Using this approach, we show thatRhaphiomidasuse a combination of niche tracking and adaptation to persist in new niches. Modelling the effect of phenology on such species’ niches will be critical for better predictions of how these species might respond to future climate change.

     
    more » « less
  5. Summary

    Interactions between species can influence successful reproduction, resulting in reproductive character displacement, where the similarity of reproductive traits – such as flowering time – among close relatives growing together differ from when growing apart. Evidence for the overall prevalence and direction of this phenomenon, and its stability under environmental change, remains untested across large scales.

    Using the power of crowdsourcing, we gathered phenological information from over 40 000 herbarium specimens, and investigated displacement in flowering time across 110 animal‐pollinated species in the eastern USA.

    Overall, flowering time displacement is not common across large scales. However, displacement is generally greater among species pairs that flower close in time, regardless of direction. Furthermore, with climate change, the flowering times of closely related species are predicted, on average, to shift further apart by the mid‐21stcentury.

    We demonstrate that the degree and direction of phenological displacement among co‐occurring closely related species pairs varies tremendously. However, future climate change may alter the differences in reproductive timing among many of these species pairs, which may have significant consequences for species interactions and gene flow. Our study provides one promising path towards understanding how the phenological landscape is structured and may respond to future environmental change.

     
    more » « less