Abstract In Mediterranean climates, the timing of seasonal rains determines germination, flowering phenology and fitness. As climate change alters seasonal precipitation patterns, it is important to ask how these changes will affect the phenology and fitness of plant populations. We addressed this question experimentally with the annual plant speciesArabidopsis thaliana.In a first experiment, we manipulated the date of rainfall onset and recorded germination phenology on sand and soil substrates. In a second experiment, we manipulated germination date, growing season length and mid‐season drought to measure their effects on flowering time and fitness. Within each experiment, we manipulated seed dormancy and flowering time using multilocus near‐isogenic lines segregating strong and weak alleles of the seed dormancy geneDOG1and the flowering time geneFRI. We synthesized germination phenology data from the first experiment with fitness functions from the second experiment to project population fitness under different seasonal rainfall scenarios.Germination phenology tracked rainfall onset but was slower and more variable on sand than on soil. Many seeds dispersed on sand in spring and summer delayed germination until the cooler temperatures of autumn. The high‐dormancyDOG1allele also prevented immediate germination in spring and summer. Germination timing strongly affected plant fitness. Fecundity was highest in the October germination cohort and declined in spring germinants. The late floweringFRIallele had lower fecundity, especially in early fall and spring cohorts. Projections of population fitness revealed that: (1) Later onset of autumn rains will negatively affect population fitness. (2) Slow, variable germination on sand buffers populations against fitness impacts of variable spring and summer rainfall. (3) Seasonal selection favours high dormancy and early flowering genotypes in a Mediterranean climate with hot dry summers. The high‐dormancyDOG1allele delayed germination of spring‐dispersed fresh seeds until more favourable early fall conditions, resulting in higher projected population fitness.These findings suggest that Mediterranean annual plant populations are vulnerable to changes in seasonal precipitation, especially in California where rainfall onset is already occurring later. The fitness advantage of highly dormant, early flowering genotypes helps explain the prevalence of this strategy in Mediterranean populations. Read the freePlain Language Summaryfor this article on the Journal blog.
more »
« less
Preforming floral primordia converge on a narrow range of stages at dormancy despite multiple effects of temperature on development
Summary Phenological studies often focus on relationships between flowering date and temperature or other environmental variables. Yet in species that preform flowers, anthesis is one stage of a lengthy developmental process, and effects of temperature on flower development in the year(s) before flowering are largely unknown.We investigated the effects of temperature during preformation on flower development inVaccinium vitis‐idaea. Using scanning electron microscopy, we established scores for developing primordia and examined effects of air temperature, depth of soil thaw, time of year and previous stage on development.Onset of flower initiation depends on soil thaw, and developmental change is greatest at early stages and during the warmest months. Regardless of temperature and time during the season, all basal floral primordia pause development at the same stage before whole‐plant dormancy.Once primordia are initiated, development does not appear to be influenced by air temperature differences within the range of variation among our sites. There may be strong endogenous flower‐level controls over development, particularly the stage at which morphogenesis ceases before dormancy. However, the strength of such internal controls in the face of continuing temperature extremes under a changing climate is unclear.
more »
« less
- PAR ID:
- 10446304
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- New Phytologist
- Volume:
- 233
- Issue:
- 6
- ISSN:
- 0028-646X
- Page Range / eLocation ID:
- p. 2599-2613
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Climate change has resulted in increased temperature means across the globe. Many angiosperms flower earlier in response to rising temperature and the phenologies of these species are reasonably well predicted by models that account for spring (early growing season) and winter temperatures. Surprisingly, however, exceptions to the general pattern of precocious flowering are common. Many species either do not appear to respond or even delay flowering in, or following, warm growing seasons. Existing phenological models have not fully addressed such exceptions to the common association of advancing phenologies with warming temperatures. The phenological events that are typically recorded (e.g., onset of flowering) are but one phase in a complex developmental process that often begins one or more years previously, and flowering time may be strongly influenced by temperature over the entire multi-year course of flower development. We propose a series of models that explore effects of growing-season temperature increase on the multiple processes of flower development and how changes in development may impact the timing of anthesis. We focus on temperate forest trees, which are characterized by preformation, the initiation of flower primordia one or more years prior to anthesis. We then synthesize the literature on flower development to evaluate the models. Although fragmentary, the existing data suggest the potential for temperature to affect all aspects of flower development in woody perennials. But, even for relatively well studied taxa, the critical developmental responses that underlie phenological patterns are difficult to identify. Our proposed models explain the seemingly counter-intuitive observations that warmer growingseason temperatures delay flowering in many species. Future research might concentrate on taxa that do not appear to respond to temperature, or delay flowering in response to warm temperatures, to understand what processes contribute to this pattern.more » « less
-
Summary The timing of reproduction is a critical developmental decision in the life cycle of many plant species.Fine mapping of a rapid‐flowering mutant was done using whole‐genome sequence data from bulked DNA from a segregating F2 mapping populations. The causative mutation maps to a gene orthologous with the third subunit of DNA polymerase δ (POLD3), a previously uncharacterized gene in plants. Expression analyses of POLD3 were conducted via real time qPCR to determine when and in what tissues the gene is expressed.To better understand the molecular basis of the rapid‐flowering phenotype, transcriptomic analyses were conducted in the mutant vs wild‐type. Consistent with the rapid‐flowering mutant phenotype, a range of genes involved in floral induction and flower development are upregulated in the mutant.Our results provide the first characterization of the developmental and gene expression phenotypes that result from a lesion inPOLD3in plants.more » « less
-
Abstract Changes from historic weather patterns have affected the phenology of many organisms world‐wide. Altered phenology can introduce organisms to novel abiotic conditions during growth and modify species interactions, both of which could drive changes in reproduction.We explored how climate change can alter plant reproduction using an experiment in which we manipulated the individual and combined effects of snowmelt timing and frost exposure, and measured subsequent effects on flowering phenology, peak flower density, frost damage, pollinator visitation and reproduction of four subalpine wildflowers. Additionally, we conducted a pollen‐supplementation experiment to test whether the plants in our snowmelt and frost treatments were pollen limited for reproduction. The four plants included species flowering in early spring to mid‐summer.The phenology of all four species was significantly advanced, and the bloom duration was longer in the plots from which we removed snow, but with species‐specific responses to snow removal and frost exposure in terms of frost damage, flower production, pollinator visitation and reproduction. The two early blooming species showed significant signs of frost damage in both early snowmelt and frost treatments, which negatively impacted reproduction for one of the species. Further, we recorded fewer pollinators during flowering for the earliest‐blooming species in the snow removal plots. We also found lower fruit and seed set for the early blooming species in the snow removal treatment, which could be attributed to the plants growing under unfavourable abiotic conditions. However, the later‐blooming species escaped frost damage even in the plots where snow was removed, and experienced increased pollinator visitation and reproduction.Synthesis.This study provides insight into how plant communities could become altered due to changes in abiotic conditions, and some of the mechanisms involved. While early blooming species may be at a disadvantage under climate change, species that bloom later in the season may benefit from early snowmelt, suggesting that climate change has the potential to reshape flowering communities.more » « less
-
Summary The formation of developmental boundaries is a common feature of multicellular plants and animals, and impacts the initiation, structure and function of all organs. Maize leaves comprise a proximal sheath that encloses the stem, and a distal photosynthetic blade that projects away from the plant axis. An epidermally derived ligule and a joint‐like auricle develop at the blade/sheath boundary of maize leaves. Mutations disturbing the ligule/auricle region disrupt leaf patterning and impact plant architecture, yet it is unclear how this developmental boundary is established.Targeted microdissection followed by transcriptomic analyses of young leaf primordia were utilized to construct a co‐expression network associated with development of the blade/sheath boundary.Evidence is presented for proximodistal gradients of gene expression that establish a prepatterned transcriptomic boundary in young leaf primordia, before the morphological initiation of the blade/sheath boundary in older leaves.This work presents a conceptual model for spatiotemporal patterning of proximodistal leaf domains, and provides a rich resource of candidate gene interactions for future investigations of the mechanisms of blade/sheath boundary formation in maize.more » « less
An official website of the United States government
