skip to main content

Title: A Principled Approach to Designing Assessments That Integrate Science and Computational Thinking
There is increasing interest in broadening participation in computational thinking (CT) by integrating CT into pre-college STEM curricula and instruction. Science, in particular, is emerging as an important discipline to support integrated learning. This highlights the need for carefully designed assessments targeting the integration of science and CT to help teachers and researchers gauge students’ proficiency with integrating the disciplines. We describe a principled design process to develop assessment tasks and rubrics that integrate concepts and practices across science, CT, and computational modeling. We conducted a pilot study with 10 high school students who responded to integrative assessment tasks as part of a physics-based computational modeling unit. Our findings indicate that the tasks and rubrics successfully elicit both Physics and CT constructs while distinguishing important aspects of proficiency related to the two disciplines. This work illustrates the promise of using such assessments formatively in integrated STEM and computing learning contexts.
Authors:
; ; ; ;
Award ID(s):
1640199
Publication Date:
NSF-PAR ID:
10147484
Journal Name:
13th International Conference of the Learning Sciences (ICLS)
Volume:
1
Sponsoring Org:
National Science Foundation
More Like this
  1. de Vries, E. (Ed.)
    We articulate a framework for characterizing student learning trajectories as they progress through a scientific modeling curriculum. By maintaining coherence between modeling representations and leveraging key design principles including evidence-centered design, we develop mechanisms to evaluate student science and computational thinking (CT) proficiency as they transition from conceptual to computational modeling representations. We have analyzed pre-post assessments and learning artifacts from 99 6th grade students and present three contrasting vignettes to illustrate students’ learning trajectories as they work on their modeling tasks. Our analysis indicates pathways that support the transition and identify domain-specific support needs. Our findings will inform refinementsmore »to our curriculum and scaffolding of students to further support the integrated learning of science and CT.« less
  2. de Vries, E. (Ed.)
    We articulate a framework for characterizing student learning trajectories as they progress through a scientific modeling curriculum. By maintaining coherence between modeling representations and leveraging key design principles including evidence-centered design, we develop mechanisms to evaluate student science and computational thinking (CT) proficiency as they transition from conceptual to computational modeling representations. We have analyzed pre-post assessments and learning artifacts from 99 6th grade students and present three contrasting vignettes to illustrate students’ learning trajectories as they work on their modeling tasks. Our analysis indicates pathways that support the transition and identify domain-specific support needs. Our findings will inform refinementsmore »to our curriculum and scaffolding of students to further support the integrated learning of science and CT.« less
  3. We articulate a framework for characterizing student learning trajectories as they progress through a scientific modeling curriculum. By maintaining coherence between modeling representations and leveraging key design principles including evidence-centered design, we develop mechanisms to evaluate student science and computational thinking (CT) proficiency as they transition from conceptual to computational modeling representations. We have analyzed pre-post assessments and learning artifacts from 99 6th grade students and present three contrasting vignettes to illustrate students’ learning trajectories as they work on their modeling tasks. Our analysis indicates pathways that support the transition and identify domain-specific support needs. Our findings will inform refinementsmore »to our curriculum and scaffolding of students to further support the integrated learning of science and CT.« less
  4. Synergistic learning of computational thinking (CT) and STEM has proven to effective in helping students develop better understanding of STEM topics, while simultaneously acquiring CT concepts and practices. With the ubiquity of computational devices and tools, advances in technology,and the globalization of product development, it is important for our students to not only develop multi-disciplinary skills acquired through such synergistic learning opportunities, but to also acquire key collaborative learning and problem-solving skills. In this paper, we describe the design and implementation of a collaborative learning-by-modeling environment developed for high school physics classrooms. We develop systematic rubrics and discuss the resultsmore »of key evaluation schemes to analyze collaborative synergistic learning of physics and CT concepts and practices.« less
  5. Computational Thinking (CT) can play a central role in fostering students' integrated learning of science and engineering. We adopt this framework to design and develop the Water Runoff Challenge (WRC) curriculum for lower middle school students in the USA. This paper presents (1) the WRC curriculum implemented in an integrated computational modeling and engineering design environment and (2) formative and summative assessments used to evaluate learner’s science, engineering, and CT skills as they progress through the curriculum. We derived a series of performance measures associated with student learning from system log data and the assessments. By applying Path Analysis wemore »found significant relations between measures of science, engineering, and CT learning, indicating that they are mutually supportive of learning across these disciplines.« less