skip to main content


Title: DOUBLY-ADAPTIVE ARTIFICIAL COMPRESSION METHODS FOR INCOMPRESSIBLE FLOW
This report presents adaptive artificial compression methods in which the time-step and artificial compression parameter ε are independently adapted. The resulting algorithms are supported by analysis and numerical tests. The first and second-order methods are embedded. As a result, the computational, cognitive and space complexities of the adaptive ε,k algorithms are negligibly greater than that of the simplest, first-order, constant ε, constant k artificial compression method.  more » « less
Award ID(s):
1817542
NSF-PAR ID:
10147666
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of numerical mathematics
ISSN:
1569-3953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract This report presents adaptive artificial compression methods in which the time-step and artificial compression parameter ε are independently adapted. The resulting algorithms are supported by analysis and numerical tests. The first and second-order methods are embedded. As a result, the computational, cognitive, and space complexities of the adaptive ε , k algorithms are negligibly greater than that of the simplest, first-order, constant ε , constant k artificial compression method. 
    more » « less
  2. This paper develops, analyzes and tests a time-accurate partitioned method for the Stokes-Darcy equations. The method combines a time filter and Backward Euler scheme, is second order accurate and provide, at no extra complexity, an estimated the temporal error. This approach post-processes the solutions of Backward Euler scheme by adding three lines to original codes to increase the time accuracy from first order to second order. We prove long time stability and error estimates of Backward Euler plus time filter with constant time stepsize. Moreover, we extend the approach to variable time stepsize and construct adaptive algorithms. Numerical tests show convergence of our method and support the theoretical analysis. 
    more » « less
  3. Over the last two decades, frameworks for distributed-memory parallel computation, such as MapReduce, Hadoop, Spark and Dryad, have gained significant popularity with the growing prevalence of large network datasets. The Massively Parallel Computation (MPC) model is the de-facto standard for studying graph algorithms in these frameworks theoretically. Subgraph counting is one such fundamental problem in analyzing massive graphs, with the main algorithmic challenges centering on designing methods which are both scalable and accurate. Given a graph G = (V, E) with n vertices, m edges and T triangles, our first result is an algorithm that outputs a (1+ε)-approximation to T, with asymptotically optimal round and total space complexity provided any S ≥ max{(√ m, n²/m)} space per machine and assuming T = Ω(√{m/n}). Our result gives a quadratic improvement on the bound on T over previous works. We also provide a simple extension of our result to counting any subgraph of k size for constant k ≥ 1. Our second result is an O_δ(log log n)-round algorithm for exactly counting the number of triangles, whose total space usage is parametrized by the arboricity α of the input graph. We extend this result to exactly counting k-cliques for any constant k. Finally, we prove that a recent result of Bera, Pashanasangi and Seshadhri (ITCS 2020) for exactly counting all subgraphs of size at most 5 can be implemented in the MPC model in Õ_δ(√{log n}) rounds, O(n^δ) space per machine and O(mα³) total space. In addition to our theoretical results, we simulate our triangle counting algorithms in real-world graphs obtained from the Stanford Network Analysis Project (SNAP) database. Our results show that both our approximate and exact counting algorithms exhibit improvements in terms of round complexity and approximation ratio, respectively, compared to two previous widely used algorithms for these problems. 
    more » « less
  4. We present a set of parallel algorithms for computing exact k-nearest neighbors in low dimensions. Many k-nearest neighbor algorithms use either a kd-tree or the Morton ordering of the point set; our algorithms combine these approaches using a data structure we call the zd-tree. We show that this combination is both theoretically efficient under common assumptions, and fast in practice. For point sets of size n with bounded expansion constant and bounded ratio, the zd-tree can be built in O(n) work with O(n^ε) span for constant ε < 1, and searching for the k-nearest neighbors of a point takes expected O(k log k) time. We benchmark our k-nearest neighbor algorithms against existing parallel k-nearest neighbor algorithms, showing that our implementations are generally faster than the state of the art as well as achieving 75x speedup on 144 hyperthreads. Furthermore, the zd-tree supports parallel batch-dynamic insertions and deletions; to our knowledge, it is the first k-nearest neighbor data structure to support such updates. On point sets with bounded expansion constant and bounded ratio, a batch-dynamic update of size k requires O(k log n/k) work with O(k^ε + polylog(n)) span. 
    more » « less
  5. Given a metric space ℳ = (X,δ), a weighted graph G over X is a metric t-spanner of ℳ if for every u,v ∈ X, δ(u,v) ≤ δ_G(u,v) ≤ t⋅ δ(u,v), where δ_G is the shortest path metric in G. In this paper, we construct spanners for finite sets in metric spaces in the online setting. Here, we are given a sequence of points (s₁, …, s_n), where the points are presented one at a time (i.e., after i steps, we have seen S_i = {s₁, … , s_i}). The algorithm is allowed to add edges to the spanner when a new point arrives, however, it is not allowed to remove any edge from the spanner. The goal is to maintain a t-spanner G_i for S_i for all i, while minimizing the number of edges, and their total weight. Under the L₂-norm in ℝ^d for arbitrary constant d ∈ ℕ, we present an online (1+ε)-spanner algorithm with competitive ratio O_d(ε^{-d} log n), improving the previous bound of O_d(ε^{-(d+1)}log n). Moreover, the spanner maintained by the algorithm has O_d(ε^{1-d}log ε^{-1})⋅ n edges, almost matching the (offline) optimal bound of O_d(ε^{1-d})⋅ n. In the plane, a tighter analysis of the same algorithm provides an almost quadratic improvement of the competitive ratio to O(ε^{-3/2}logε^{-1}log n), by comparing the online spanner with an instance-optimal spanner directly, bypassing the comparison to an MST (i.e., lightness). As a counterpart, we design a sequence of points that yields a Ω_d(ε^{-d}) lower bound for the competitive ratio for online (1+ε)-spanner algorithms in ℝ^d under the L₁-norm. Then we turn our attention to online spanners in general metrics. Note that, it is not possible to obtain a spanner with stretch less than 3 with a subquadratic number of edges, even in the offline setting, for general metrics. We analyze an online version of the celebrated greedy spanner algorithm, dubbed ordered greedy. With stretch factor t = (2k-1)(1+ε) for k ≥ 2 and ε ∈ (0,1), we show that it maintains a spanner with O(ε^{-1}logε^{-1})⋅ n^{1+1/k} edges and O(ε^{-1}n^{1/k}log² n) lightness for a sequence of n points in a metric space. We show that these bounds cannot be significantly improved, by introducing an instance that achieves an Ω(1/k⋅ n^{1/k}) competitive ratio on both sparsity and lightness. Furthermore, we establish the trade-off among stretch, number of edges and lightness for points in ultrametrics, showing that one can maintain a (2+ε)-spanner for ultrametrics with O(ε^{-1}logε^{-1})⋅ n edges and O(ε^{-2}) lightness. 
    more » « less