This report presents a low computational and cognitive complexity, stable, time accurate and adaptive method for the Navier-Stokes equations. The improved method requires a minimally intrusive modification to an existing program based on the fully implicit / backward Euler time discretization, does not add to the computational complexity, and is conceptually simple. The backward Euler approximation is simply post-processed with a two-step, linear time filter. The time filter additionally removes the overdamping of Backward Euler while remaining unconditionally energy stable, proven herein. Even for constant stepsizes, the method does not reduce to a standard / named time stepping method but is related to a known 2-parameter family of A-stable, two step, second order methods. Numerical tests confirm the predicted convergence rates and the improved predictions of flow quantities such as drag and lift. 
                        more » 
                        « less   
                    
                            
                            Adaptive partitioned methods for the time-accurate approximation of the evolutionary Stokes–Darcy system
                        
                    
    
            This paper develops, analyzes and tests a time-accurate partitioned method for the Stokes-Darcy equations. The method combines a time filter and Backward Euler scheme, is second order accurate and provide, at no extra complexity, an estimated the temporal error. This approach post-processes the solutions of Backward Euler scheme by adding three lines to original codes to increase the time accuracy from first order to second order. We prove long time stability and error estimates of Backward Euler plus time filter with constant time stepsize. Moreover, we extend the approach to variable time stepsize and construct adaptive algorithms. Numerical tests show convergence of our method and support the theoretical analysis. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1817542
- PAR ID:
- 10147672
- Date Published:
- Journal Name:
- Computer methods in applied mechanics and engineering
- Volume:
- 364
- ISSN:
- 1879-2138
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract This work focuses on the development of a novel, strongly-coupled, second-order partitioned method for fluid–poroelastic structure interaction. The flow is assumed to be viscous and incompressible, and the poroelastic material is described using the Biot model. To solve this problem, a numerical method is proposed, based on Robin interface conditions combined with the refactorization of the Cauchy’s one-legged ‘ϑ-like’ method. This approach allows the use of the mixed formulation for the Biot model. The proposed algorithm consists of solving a sequence of Backward Euler–Forward Euler steps. In the Backward Euler step, the fluid and poroelastic structure problems are solved iteratively until convergence. Then, the Forward Euler problems are solved using equivalent linear extrapolations. We prove that the iterative procedure in the Backward Euler step is convergent, and that the converged method is stable whenϑ∈ [1/2, 1]. Numerical examples are used to explore convergence rates with varying parameters used in our scheme, and to compare our method to a monolithic method based on Nitsche’s coupling approach.more » « less
- 
            In this paper, we discuss the stability and error estimates of the fully discrete schemes for linear conservation laws, which consists of an arbitrary Lagrangian–Eulerian discontinuous Galerkin method in space and explicit total variation diminishing Runge–Kutta (TVD-RK) methods up to third order accuracy in time. The scaling arguments and the standard energy analysis are the key techniques used in our work. We present a rigorous proof to obtain stability for the three fully discrete schemes under suitable CFL conditions. With the help of the reference cell, the error equations are easy to establish and we derive the quasi-optimal error estimates in space and optimal convergence rates in time. For the Euler-forward scheme with piecewise constant elements, the second order TVD-RK method with piecewise linear elements and the third order TVD-RK scheme with polynomials of any order, the usual CFL condition is required, while for other cases, stronger time step restrictions are needed for the results to hold true. More precisely, the Euler-forward scheme needs τ ≤ ρh 2 and the second order TVD-RK scheme needs $$ \tau \le \rho {h}^{\frac{4}{3}}$$ for higher order polynomials in space, where τ and h are the time and maximum space step, respectively, and ρ is a positive constant independent of τ and h .more » « less
- 
            Building on the framework of Zhang & Shu [1,2], we develop a realizability-preserving method to simulate the transport of particles (fermions) through a background material using a two-moment model that evolves the angular moments of a phase space distribution function f. The two-moment model is closed using algebraic moment closures; e.g., as proposed by Cernohorsky & Bludman [3] and Banach & Larecki [4]. Variations of this model have recently been used to simulate neutrino transport in nuclear astrophysics applications, including core-collapse supernovae and compact binary mergers. We employ the discontinuous Galerkin (DG) method for spatial discretization (in part to capture the asymptotic diffusion limit of the model) combined with implicit-explicit (IMEX) time integration to stably bypass short timescales induced by frequent interactions between particles and the background. Appropriate care is taken to ensure the method preserves strict algebraic bounds on the evolved moments (particle density and flux) as dictated by Pauli’s exclusion principle, which demands a bounded distribution function (i.e., f ∈ [0, 1]). This realizability-preserving scheme combines a suitable CFL condition, a realizability- enforcing limiter, a closure procedure based on Fermi-Dirac statistics, and an IMEX scheme whose stages can be written as a convex combination of forward Euler steps combined with a backward Euler step. The IMEX scheme is formally only first-order accurate, but works well in the diffusion limit, and — without interactions with the background — reduces to the optimal second-order strong stability-preserving explicit Runge-Kutta scheme of Shu & Osher [5]. Numerical results demonstrate the realizability-preserving properties of the scheme. We also demonstrate that the use of algebraic moment closures not based on Fermi-Dirac statistics can lead to unphysical moments in the context of fermion transport.more » « less
- 
            The analyses of interior penalty discontinuous Galerkin methods of any order k for solving elliptic and parabolic problems with Dirac line sources are presented. For the steady state case, we prove convergence of the method by deriving a priori error estimates in the L 2 norm and in weighted energy norms. In addition, we prove almost optimal local error estimates in the energy norm for any approximation order. Further, almost optimal local error estimates in the L 2 norm are obtained for the case of piecewise linear approximations whereas suboptimal error bounds in the L 2 norm are shown for any polynomial degree. For the time-dependent case, convergence of semi-discrete and of backward Euler fully discrete scheme is established by proving error estimates in L 2 in time and in space. Numerical results for the elliptic problem are added to support the theoretical results.more » « less
 An official website of the United States government
An official website of the United States government 
				
			
 
                                    