skip to main content


Title: Adaptive partitioned methods for the time-accurate approximation of the evolutionary Stokes–Darcy system
This paper develops, analyzes and tests a time-accurate partitioned method for the Stokes-Darcy equations. The method combines a time filter and Backward Euler scheme, is second order accurate and provide, at no extra complexity, an estimated the temporal error. This approach post-processes the solutions of Backward Euler scheme by adding three lines to original codes to increase the time accuracy from first order to second order. We prove long time stability and error estimates of Backward Euler plus time filter with constant time stepsize. Moreover, we extend the approach to variable time stepsize and construct adaptive algorithms. Numerical tests show convergence of our method and support the theoretical analysis.  more » « less
Award ID(s):
1817542
NSF-PAR ID:
10147672
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Computer methods in applied mechanics and engineering
Volume:
364
ISSN:
1879-2138
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present a discontinuity aware quadrature (DAQ) rule and use it to develop implicit self-adaptive theta (SATh) schemes for the approximation of scalar hyperbolic conservation laws. Our SATh schemes require the solution of a system of two equations, one controlling the cell averages of the solution at the time levels, and the other controlling the space-time averages of the solution. These quantities are used within the DAQ rule to approximate the time integral of the hyperbolic flux function accurately, even when the solution may be discontinuous somewhere over the time interval. The result is a finite volume scheme using the theta time stepping method, with theta defined implicitly (or self-adaptively). Two schemes are developed, self-adaptive theta upstream weighted (SATh-up) for a monotone flux function using simple upstream stabilization, and self-adaptive theta Lax–Friedrichs (SATh-LF) using the Lax–Friedrichs numerical flux. We prove that DAQ is accurate to second order when there is a discontinuity in the solution and third order when it is smooth. We prove that SATh-up is unconditionally stable, provided that theta is set to be at least 1/2 (which means that SATh can be only first order accurate in general). We also prove that SATh-up satisfies the maximum principle, and is total variation diminishing under appropriate monotonicity and boundary conditions. General flux functions require the SATh-LF scheme, so we assess its accuracy through numerical examples in one and two space dimensions. These results suggest that SATh-LF is also stable and satisfies the maximum principle (at least at reasonable Courant-Friedrichs-Lewy numbers). Compared to the solutions of finite volume schemes using Crank–Nicolson and backward Euler time stepping, SATh-LF solutions often approach the accuracy of the former, but without oscillation, and they are numerically less diffuse than the latter. 
    more » « less
  2. This report presents a low computational and cognitive complexity, stable, time accurate and adaptive method for the Navier-Stokes equations. The improved method requires a minimally intrusive modification to an existing program based on the fully implicit / backward Euler time discretization, does not add to the computational complexity, and is conceptually simple. The backward Euler approximation is simply post-processed with a two-step, linear time filter. The time filter additionally removes the overdamping of Backward Euler while remaining unconditionally energy stable, proven herein. Even for constant stepsizes, the method does not reduce to a standard / named time stepping method but is related to a known 2-parameter family of A-stable, two step, second order methods. Numerical tests confirm the predicted convergence rates and the improved predictions of flow quantities such as drag and lift. 
    more » « less
  3. A second‐order accurate, linear numerical method is analyzed for the Landau–Lifshitz equation with large damping parameters. This equation describes the dynamics of magnetization, with a non‐convexity constraint of unit length of the magnetization. The numerical method is based on the second‐order backward differentiation formula in time, combined with an implicit treatment for the linear diffusion term from the harmonic mapping part and explicit extrapolation for the nonlinear terms. Afterward, a projection step is applied to normalize the numerical solution at a point‐wise level. This numerical scheme has shown extensive advantages in the practical computations for the physical model with large damping parameters, which comes from the fact that only a linear system with constant coefficients (independent of both time and the updated magnetization) needs to be solved at each time step, and has greatly improved the numerical efficiency. Meanwhile, a theoretical analysis for this linear numerical scheme has not been available. In this paper, we provide a rigorous error estimate of the numerical scheme, in the discrete norm, under suitable regularity assumptions and reasonable ratio between the time step size and the spatial mesh size. In particular, the projection operation is nonlinear, and a stability estimate for the projection step turns out to be highly challenging. Such a stability estimate is derived in details, which will play an essential role in the convergence analysis for the numerical scheme, if the damping parameter is greater than 3.

     
    more » « less
  4. The analyses of interior penalty discontinuous Galerkin methods of any order k for solving elliptic and parabolic problems with Dirac line sources are presented. For the steady state case, we prove convergence of the method by deriving a priori error estimates in the L 2 norm and in weighted energy norms. In addition, we prove almost optimal local error estimates in the energy norm for any approximation order. Further, almost optimal local error estimates in the L 2 norm are obtained for the case of piecewise linear approximations whereas suboptimal error bounds in the L 2 norm are shown for any polynomial degree. For the time-dependent case, convergence of semi-discrete and of backward Euler fully discrete scheme is established by proving error estimates in L 2 in time and in space. Numerical results for the elliptic problem are added to support the theoretical results. 
    more » « less
  5. In this paper, we discuss the stability and error estimates of the fully discrete schemes for linear conservation laws, which consists of an arbitrary Lagrangian–Eulerian discontinuous Galerkin method in space and explicit total variation diminishing Runge–Kutta (TVD-RK) methods up to third order accuracy in time. The scaling arguments and the standard energy analysis are the key techniques used in our work. We present a rigorous proof to obtain stability for the three fully discrete schemes under suitable CFL conditions. With the help of the reference cell, the error equations are easy to establish and we derive the quasi-optimal error estimates in space and optimal convergence rates in time. For the Euler-forward scheme with piecewise constant elements, the second order TVD-RK method with piecewise linear elements and the third order TVD-RK scheme with polynomials of any order, the usual CFL condition is required, while for other cases, stronger time step restrictions are needed for the results to hold true. More precisely, the Euler-forward scheme needs τ ≤ ρh 2 and the second order TVD-RK scheme needs $ \tau \le \rho {h}^{\frac{4}{3}}$ for higher order polynomials in space, where τ and h are the time and maximum space step, respectively, and ρ is a positive constant independent of τ and h . 
    more » « less