Abstract The influence of gravity waves generated by surface stress and by topography on the atmospheric kinetic energy (KE) spectrum is examined using idealized simulations of a cyclone growing in baroclinically unstable shear flow. Even in the absence of topography, surface stress greatly enhances the generation of gravity waves in the vicinity of the cold front, and vertical energy fluxes associated with these waves produce a pronounced shallowing of the KE spectrum at mesoscale wavelengths relative to the corresponding free-slip case. The impact of a single isolated ridge is, however, much more pronounced than that of surface stress. When the mountain waves are well developed, they produce a wavenumber to the −5/3 spectrum in the lower stratosphere over a broad range of mesoscale wavelengths. In the midtroposphere, a smaller range of wavelengths also exhibits a −5/3 spectrum. When the mountain is 500 m high, the waves do not break, and their KE is entirely associated with the divergent component of the velocity field, which is almost constant with height. When the mountain is 2 km high, wave breaking creates potential vorticity, and the rotational component of the KE spectrum is also strongly energized by the waves. Analysis of the spectral KE budgets shows that the actual spectrum is the result of continually shifting balances of direct forcing from vertical energy flux divergence, conservative advective transport, and buoyancy flux. Nevertheless, there is one interesting example where the −5/3-sloped lower-stratospheric energy spectrum appears to be associated with a gravity-wave-induced upscale inertial cascade.
more »
« less
An Investigation of Spiral Gravity Waves Radiating from Tropical Cyclones Using a Linear, Nonhydrostatic Model
A recent study showed observational and numerical evidence for small-scale gravity waves that radiate outward from tropical cyclones. These waves are wrapped into tight spirals by the radial and vertical shears of the tangential wind field. Reexamination of the previously studied tropical cyclone simulations suggests that the dominant source for these waves are convective asymmetries rotating along the eyewall, modulated in intensity by the preferred convection region on the left side of the environmental wind shear vector. A linearized, nonhydrostatic model for perturbations to a balanced vortex is used to study the waves. Forcing the linear model with rotating and pulsing asymmetric heat sources generates radiating gravity waves with multiple vertical and horizontal structures. The pulsation of the rotating heat source generates two types of waves: fast, deep waves with larger radial wavelengths, and slower, secondary waves with shorter radial and vertical wavelengths. The deeper waves produce surface pressure oscillations that have time scales consistent with surface observations, whereas the shorter waves have little surface indication but produce oscillations in vertical velocity with shorter radial wavelengths that are consistent with aircraft observations. Convective forcing that is either not pulsing or not rotating produces gravity waves but they are not as similar to the observed or simulated waves. The effects of varying the intensity of the cyclone, the asymmetry of the forcing, and the static stability of the surrounding atmosphere are explored.
more »
« less
- Award ID(s):
- 1654831
- PAR ID:
- 10147705
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Journal of the Atmospheric Sciences
- Volume:
- 77
- Issue:
- 5
- ISSN:
- 0022-4928
- Page Range / eLocation ID:
- p. 1733-1759
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Recent observational and numerical studies have investigated the dynamics of fine‐scale gravity waves radiating horizontally outward from tropical cyclones. The waves are wrapped into spirals by the tangential wind of the cyclone and are described as spiral gravity waves. This study addresses how well numerical simulations of these waves compare to observations as the horizontal grid spacing is decreased from 2.0 to 1.0 to 0.5 km, and the number of vertical levels changes from 25 to 50 to 100. Spectral filtering is applied to separate the fine‐scale waves in vertical velocity (w) and the larger‐scale waves in pressure (p) from moist updrafts and downdrafts in the eyewall and rainbands. As the grid spacing decreases, the radial wavelengths of thewwaves decrease from 20 to 7 km, approaching observed values. For grid spacing 1.0 km, thepwaves become well‐resolved with wavelength 70 km. The outward phase speeds range from 15 to 30 ms−1for thewwaves and 50 to 70 ms−1forpwaves. Analysis of the upper‐level outflow region finds that the spiralwwaves propagate 5–10 ms−1faster due to radial advection, but also finds what appear to be different classes of larger‐amplitude, slow‐moving spiral waves. Similar waves can be seen in satellite images, which appear to be caused by dynamical instability of the strongly vertically sheared radial and tangential winds in the TC outflow.more » « less
-
Abstract Westerly wind bursts (WWBs) are brief, anomalously westerly winds in the tropical Pacific that play a role in the dynamics of ENSO through their forcing of ocean Kelvin waves. They have been associated with atmospheric phenomena such as tropical cyclones, the MJO, and convectively coupled Rossby waves, yet their basic mechanism is not yet well understood. We study WWBs using an aquaplanet general circulation model, and find that eastward-propagating convective heating plays a key role in the generation of model WWBs, consistent with previous studies. Furthermore, wind-induced surface heat exchange (WISHE) acts on a short time scale of about two days to dramatically amplify the model WWB winds near the peak of the event. On the other hand, it is found that radiation feedbacks (i.e., changes in the net radiative anomalies accompanying westerly wind bursts) are not essential for the development of WWBs, and act as a weak negative feedback on WWBs and their associated convection. Similarly, sensible surface heat flux anomalies are not found to have an effect on the development of model WWBs.more » « less
-
Abstract Because geostationary satellite (Geo) imagery provides a high temporal resolution window into tropical cyclone (TC) behavior, we investigate the viability of its application to short-term probabilistic forecasts of TC convective structure to subsequently predict TC intensity. Here, we present a prototype model that is trained solely on two inputs: Geo infrared imagery leading up to the synoptic time of interest and intensity estimates up to 6 h prior to that time. To estimate future TC structure, we compute cloud-top temperature radial profiles from infrared imagery and then simulate the evolution of an ensemble of those profiles over the subsequent 12 h by applying a deep autoregressive generative model (PixelSNAIL). To forecast TC intensities at hours 6 and 12, we input operational intensity estimates up to the current time (0 h) and simulated future radial profiles up to +12 h into a “nowcasting” convolutional neural network. We limit our inputs to demonstrate the viability of our approach and to enable quantification of value added by the observed and simulated future radial profiles beyond operational intensity estimates alone. Our prototype model achieves a marginally higher error than the National Hurricane Center’s official forecasts despite excluding environmental factors, such as vertical wind shear and sea surface temperature. We also demonstrate that it is possible to reasonably predict short-term evolution of TC convective structure via radial profiles from Geo infrared imagery, resulting in interpretable structural forecasts that may be valuable for TC operational guidance. Significance Statement This work presents a new method of short-term probabilistic forecasting for tropical cyclone (TC) convective structure and intensity using infrared geostationary satellite observations. Our prototype model’s performance indicates that there is some value in observed and simulated future cloud-top temperature radial profiles for short-term intensity forecasting. The nonlinear nature of machine learning tools can pose an interpretation challenge, but structural forecasts produced by our model can be directly evaluated and, thus, may offer helpful guidance to forecasters regarding short-term TC evolution. Since forecasters are time limited in producing each advisory package despite a growing wealth of satellite observations, a tool that captures recent TC convective evolution and potential future changes may support their assessment of TC behavior in crafting their forecasts.more » « less
-
Abstract Tropical cyclones are commonly observed to have appreciable vertical misalignments prior to becoming full-strength hurricanes. The vertical misalignment (tilt) of a tropical cyclone is generally coupled to a pronounced asymmetry of inner-core convection, with the strongest convection tending to concentrate downtilt of the surface vortex center. Neither the mechanisms by which tilted tropical cyclones intensify nor the time scales over which such mechanisms operate are fully understood. The present study offers some insight into the asymmetric intensification process by examining the responses of tilted tropical cyclone–like vortices to downtilt diabatic forcing (heating) in a 3D nonhydrostatic numerical model. The magnitude of the heating is adjusted so as to vary the strength of the downtilt convection that it generates. A fairly consistent picture of intensification is found in various simulation groups that differ in their initial vortex configurations, environmental shear flows, and specific positionings of downtilt heating. The intensification mechanism generally depends on whether the low-level convergence σb produced in the vicinity of the downtilt heat source exceeds a critical value dependent on the local velocity of the low-level nondivergent background flow in a reference frame that drifts with the heat source. Supercritical σb causes fast spinup initiated by downtilt core replacement. Subcritical σb causes a slower intensification process. As measured herein, the supercritical intensification rate is approximately proportional to σb. The subcritical intensification rate has a more subtle scaling, and expectedly becomes negative when σb drops below a threshold for frictional spindown to dominate. The relevance of the foregoing results to real-world tropical cyclones is discussed.more » « less
An official website of the United States government
