skip to main content

Title: Cavitation in lipid bilayers poses strict negative pressure stability limit in biological liquids

Biological and technological processes that involve liquids under negative pressure are vulnerable to the formation of cavities. Maximal negative pressures found in plants are around −100 bar, even though cavitation in pure bulk water only occurs at much more negative pressures on the relevant timescales. Here, we investigate the influence of small solutes and lipid bilayers, both constituents of all biological liquids, on the formation of cavities under negative pressures. By combining molecular dynamics simulations with kinetic modeling, we quantify cavitation rates on biologically relevant length scales and timescales. We find that lipid bilayers, in contrast to small solutes, increase the rate of cavitation, which remains unproblematically low at the pressures found in most plants. Only when the negative pressures approach −100 bar does cavitation occur on biologically relevant timescales. Our results suggest that bilayer-based cavitation is what generally limits the magnitude of negative pressures in liquids that contain lipid bilayers.

Authors:
; ; ; ; ;
Publication Date:
NSF-PAR ID:
10147720
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
20
Page Range or eLocation-ID:
p. 10733-10739
ISSN:
0027-8424
Publisher:
Proceedings of the National Academy of Sciences
Sponsoring Org:
National Science Foundation
More Like this
  1. Biological and technological processes that involve liquids under negative pressure are vulnerable to the formation of cavities. Maximal negative pressures found in plants are around −100 bar, even though cavitation in pure bulk water only occurs at much more negative pressures on the relevant time scales. Here, we investigate the influence of small solutes and lipid bilayers, both constituents of all biological liquids, on the formation of cavities under negative pressures. By combining molecular dynamics simulations with kinetic modeling, we quantify cavitation rates on biologically relevant length and time scales. We find that lipid bilayers, in contrast to small solutes,more »increase the rate of cavitation, which remains unproblematically low at the pressures found in most plants. Only when the negative pressures approach −100 bar does cavitation occur on biologically relevant time scales. Our results suggest that bilayerbased cavitation is what generally limits the magnitude of negative pressures in liquids that contain lipid bilayers.« less
  2. Living cells segregate molecules and reactions in various subcellular compartments known as organelles. Spatial organization is likely essential for expanding the biochemical functions of synthetic reaction systems, including artificial cells. Many studies have attempted to mimic organelle functions using lamellar membrane-bound vesicles. However, vesicles typically suffer from highly limited transport across the membranes and an inability to mimic the dense membrane networks typically found in organelles such as the endoplasmic reticulum. Here, we describe programmable synthetic organelles based on highly stable nonlamellar sponge phase droplets that spontaneously assemble from a single-chain galactolipid and nonionic detergents. Due to their nanoporous structure,more »lipid sponge droplets readily exchange materials with the surrounding environment. In addition, the sponge phase contains a dense network of lipid bilayers and nanometric aqueous channels, which allows different classes of molecules to partition based on their size, polarity, and specific binding motifs. The sequestration of biologically relevant macromolecules can be programmed by the addition of suitably functionalized amphiphiles to the droplets. We demonstrate that droplets can harbor functional soluble and transmembrane proteins, allowing for the colocalization and concentration of enzymes and substrates to enhance reaction rates. Droplets protect bound proteins from proteases, and these interactions can be engineered to be reversible and optically controlled. Our results show that lipid sponge droplets permit the facile integration of membrane-rich environments and self-assembling spatial organization with biochemical reaction systems.

    « less
  3. Time-resolved fluorescence measurements were used to characterize and quantify solute partitioning into 1,2- dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid vesicles as a function of solute concentration and temperature. The solutes, coumarin 152 (C152) and coumarin 461 (C461), both belong to a family of 7-aminocoumarin dyes that have distinctive fluorescence lifetimes in different solvation environments. The two solutes differ in the 4-position where C152 has a trifluoromethyl group in place of C461’s -CH3 group. In vesicle containing solutions, multiexponential fluorescence decays imply separate solute populations in the aqueous buffer, solvated in the vesicle headgroup region and solvated in the acyl chain bilayer interior, respectively.more »Fluorescence amplitudes, corrected for differences in radiative rates, are used to calculate absolute partition coefficients and average number of solutes per vesicle as a function of coumarin:lipid ratio and average number of solutes per vesicle. Results show that C152 has an ∼10-fold greater affinity than C461 for lipid bilayers, despite both solutes having similar hydrophobicities as inferred from their log(P) values. Temperature-dependent partitioning data are used to calculate enthalpies and entropies of C152 partitioning as a function of concentration. These values are used to extrapolate to the infinitely dilute limit. Above and below the lipid gel−liquid crystalline temperature, partitioning is exothermic with negative changes in entropy. In the vicinity of the transition temperature, these quantities change sign with ΔHpart becoming endothermic (+70 kJ/mol) and entropically favored (ΔSpart = +240 J/(mol·K)).« less
  4. Experimental techniques, such as cryo-electron microscopy, require biological samples to be recovered at cryogenic temperatures ( T ≈ 100 K) with water being in an amorphous ice state. However, (bulk) water can exist in two amorphous ices at P < 1 GPa, low-density amorphous (LDA) ice at low pressures and high-density amorphous ice (HDA) at high pressures; HDA is ≈20–25% denser than LDA. While fast/plunge cooling at 1 bar brings the sample into LDA, high-pressure cooling (HPC), at sufficiently high pressure, produces HDA. HDA can also be produced by isothermal compression of LDA at cryogenic temperatures. Here, we perform classicalmore »molecular dynamics simulations to study the effects of LDA, HDA, and the LDA–HDA transformation on the structure and hydration of a small peptide, polyalanine. We follow thermodynamic paths corresponding to (i) fast/plunge cooling at 1 bar, (ii) HPC at P = 400 MPa, and (iii) compression/decompression cycles at T = 80 K. While process (i) produced LDA in the system, path (iii) produces HDA. Interestingly, the amorphous ice produced in process (ii) is an intermediate amorphous ice (IA) with properties that fall in-between those of LDA and HDA. Remarkably, the structural changes in polyalanine are negligible at all conditions studied (0–2000 MPa, 80–300 K) even when water changes among the low and high-density liquid states as well as the amorphous solids LDA, IA, and HDA. The similarities and differences in the hydration of polyalanine vitrified in LDA, IA, and HDA are described. Since the studied thermodynamic paths are suitable for the cryopreservation of biomolecules, we also study the structure and hydration of polyalanine along isobaric and isochoric heating paths, which can be followed experimentally for the recovery of cryopreserved samples. Upon heating, the structure of polyalanine remains practically unchanged. We conclude with a brief discussion of the practical advantages of (a) using HDA and IA as a cryoprotectant environment (as opposed to LDA), and (b) the use of isochoric heating as a recovery process (as opposed to isobaric heating).« less
  5. Lipid membrane fusion is an essential process for a number of critical biological functions. The overall process is thermodynamically favorable but faces multiple kinetic barriers along the way. Inspired by nature’s engineered proteins such as SNAP receptor [soluble N-ethylmale-imide-sensitive factor-attachment protein receptor (SNARE)] complexes or viral fusogenic proteins that actively promote the development of membrane proximity, nucleation of a stalk, and triggered expansion of the fusion pore, here we introduce a synthetic fusogen that can modulate membrane fusion and equivalently prime lipid membranes for calcium-triggered fusion. Our fusogen consists of a gold nanoparticle functionalized with an amphiphilic monolayer of alkanethiolmore »ligands that had previously been shown to fuse with lipid bilayers. While previous efforts to develop synthetic fusogens have only replicated the initial steps of the fusion cascade, we use molecular simulations and complementary experimental techniques to demonstrate that these nanoparticles can induce the formation of a lipid stalk and also drive its expansion into a fusion pore upon the addition of excess calcium. These results have important implications in general understanding of stimuli-triggered fusion and the development of synthetic fusogens for biomedical applications.

    « less