skip to main content


Title: Insulin production from hiPSC‐derived pancreatic cells in a novel wicking matrix bioreactor
Abstract

Clinical use of pancreatic β islets for regenerative medicine applications requires mass production of functional cells. Current technologies are insufficient for large‐scale production in a cost‐efficient manner. Here, we evaluate advantages of a porous cellulose scaffold and demonstrate scale‐up to a wicking matrix bioreactor as a platform for culture of human endocrine cells. Scaffold modifications were evaluated in a multiwell platform to find the optimum surface condition for pancreatic cell expansion followed by bioreactor culture to confirm suitability. Preceding scale‐up, cell morphology, viability, and proliferation of primary pancreatic cells were evaluated. Two optimal surface modifications were chosen and evaluated further for insulin secretion, cell morphology, and viable cell density for human‐induced pluripotent stem cell‐derived pancreatic cells at different stages of differentiation. Scale‐up was accomplished with uncoated, amine‐modified cellulose in a miniature bioreactor, and insulin secretion and cell metabolic profiles were determined for 13 days. We achieved 10‐fold cell expansion in the bioreactor along with a significant increase in insulin secretion compared with cultures on tissue culture plastic. Our findings define a new method for expansion of pancreatic cells a on wicking matrix cellulose platform to advance cell therapy biomanufacturing for diabetes.

 
more » « less
NSF-PAR ID:
10147880
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Biotechnology and Bioengineering
Volume:
117
Issue:
7
ISSN:
0006-3592
Page Range / eLocation ID:
p. 2247-2261
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A 3D microenvironment is known to endorse pancreatic islet development from human induced pluripotent stem cells (iPSCs). However, oxygen supply becomes a limiting factor in a scaffold culture. In this study, oxygen‐releasing biomaterials are fabricated and an oxygenated scaffold culture platform is developed to offer a better oxygen supply during 3D iPSC pancreatic differentiation. It is found that the oxygenation does not alter the scaffold's mechanical properties. The in situ oxygenation improves oxygen tension within the scaffolds. The unique 3D differentiation system enables the generation of islet organoids with enhanced expression of islet signature genes and proteins. Additionally, it is discovered that the oxygenation at the early stage of differentiation has more profound impacts on islet development from iPSCs. More C‐peptide+/MAFA+β and glucagon+/MAFB+α cells formed in the iPSC‐derived islet organoids generated under oxygenated conditions, suggesting enhanced maturation of the organoids. Furthermore, the oxygenated 3D cultures improve islet organoids’ sensitivity to glucose for insulin secretion. It is herein demonstrated that the oxygenated scaffold culture empowers iPSC islet differentiation to generate clinically relevant tissues for diabetes research and treatment.

     
    more » « less
  2. Galli, Carlo (Ed.)
    In the last decades, cell-based approaches for bone tissue engineering (BTE) have relied on using models that cannot replicate the complexity of the bone microenvironment. There is an ongoing amount of research on scaffold development responding to the need for feasible materials that can mimic the bone extracellular matrix (ECM) and aid bone tissue regeneration (BTR). In this work, a porous cellulose acetate (CA) fiber mat was developed using the electrospinning technique and the mats were chemically modified to bioactivate their surface and promote osteoconduction and osteoinduction. The mats were characterized using FTIR and SEM/EDS to validate the chemical modifications and assess their structural integrity. By coupling adhesive peptides KRSR, RGD, and growth factor BMP-2, the fiber mats were bioactivated, and their induced biological responses were evaluated by employing immunocytochemical (ICC) techniques to study the adhesion, proliferation, and differentiation of premature osteoblast cells (hFOB 1.19). The biological assessment revealed that at short culturing periods of 48 hours and 7 days, the presence of the peptides was significant for proliferation and adhesion, whereas at longer culture times of 14 days, it had no significant effect on differentiation and maturation of the osteogenic progenitor cells. Based on the obtained results, it is thus concluded that the CA porous fiber mats provide a promising surface morphology that is both biocompatible and can be rendered bioactive upon the addition of osteogenic peptides to favor osteoconduction leading to new tissue formation. 
    more » « less
  3. Abstract

    Engineered tissues usually fall short of physiological cell densities and sizes, resulting in limited functional performance. Viability of large tissues is constrained by inadequate diffusion‐driven nutrient exchange. Methods to form large viable tissues are lacking and are constrained by diffusion‐driven nutrient exchange. Here, the use of the Bio‐Pick, Place, and Perfuse (Bio‐P3) is reported, an integrated biofabrication‐bioreactor platform that semiautomatically and rapidly assembles physiologically cell‐dense macrotissues with 100 million cells while being actively perfused. The Bio‐P3 grips, aligns, and stacks prefabricated, scaffold‐free microtissue parts with integrated lumens on a perfusable build‐platform. Parts spontaneously fuse into one continuous macrotissue with perfusable channels. Customizable microtissues are rapidly prepared up to centimeter‐scale with sustained functional performance. Computational models are developed and experimentally validated to elucidate the effects of perfusion rate and tissue geometry on convective nutrient transport in built macrotissues. It is shown that macrotissues constructed from human hepatocellular microtissues maintain geometry and function (albumin and urea secretion) over 5 days. The Bio‐P3 technology fabricates massive solid tissues with high cell numbers and densities to mimic human physiology for preclinical and clinical applications.

     
    more » « less
  4. Abstract

    Biomedical devices such as islet‐encapsulating systems are used for treatment of type 1 diabetes (T1D). Despite recent strides in preventing biomaterial fibrosis, challenges remain for biomaterial scaffolds due to limitations on cells contained within. The study demonstrates that proliferation and function of insulinoma (INS‐1) cells as well as pancreatic rat islets may be improved in alginate hydrogels with optimized gel%, crosslinking, and stiffness. Quantitative polymerase chain reaction (qPCR)‐based graft phenotyping of encapsulated INS‐1 cells and pancreatic islets identified a hydrogel stiffness range between 600 and 1000 Pa that improved insulin Ins and Pdx1 gene expression as well as glucose‐sensitive insulin‐secretion. Barium chloride (BaCl2) crosslinking time is also optimized due to toxicity of extended exposure. Despite possible benefits to cell viability, calcium chloride (CaCl2)‐crosslinked hydrogels exhibited a sharp storage modulus loss in vitro. Despite improved stability, BaCl2‐crosslinked hydrogels also exhibited stiffness losses over the same timeframe. It is believed that this is due to ion exchange with other species in culture media, as hydrogels incubated in dIH2O exhibited significantly improved stability. To maintain cell viability and function while increasing 3D matrix stability, a range of useful media:dIH2O dilution ratios for use are identified. Such findings have importance to carry out characterization and optimization of cell microphysiological systems with high fidelity in vitro.

     
    more » « less
  5. Abstract

    This study establishes a novel microfluidic platform for rapid encapsulation of cells at high densities in photocrosslinkable microspherical hydrogels including poly(ethylene glycol)‐diacrylate, poly(ethylene glycol)‐fibrinogen, and gelatin methacrylate. Cell‐laden hydrogel microspheres are advantageous for many applications from drug screening to regenerative medicine. Employing microfluidic systems is considered the most efficient method for scale‐up production of uniform microspheres. However, existing platforms have been constrained by traditional microfabrication techniques for device fabrication, restricting microsphere diameter to below 200 µm and making iterative design changes time‐consuming and costly. Using a new molding technique, the microfluidic device employs a modified T‐junction design with readily adjustable channel sizes, enabling production of highly uniform microspheres with cell densities (10–60 million cells mL−1) and a wide range of diameters (300–1100 µm), which are critical for realizing downstream applications, through rapid photocrosslinking (≈1 s per microsphere). Multiple cell types are encapsulated at rates of up to 1 million cells per min, are evenly distributed throughout the microspheres, and maintain high viability and appropriate cellular activities in long‐term culture. This microfluidic encapsulation platform is a valuable and readily adoptable tool for numerous applications, including supporting injectable cell therapy, bioreactor‐based cell expansion and differentiation, and high throughput tissue sphere‐based drug testing assays.

     
    more » « less