skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Application of Long-Range Synthon Aufbau Modules Based on Trihalophenols To Direct Reactivity in Binary Cocrystals: Orthogonal Hydrogen Bonding and π–π Contact Driven Self-Assembly with Single-Crystal Reactivity
Award ID(s):
1708673
PAR ID:
10147962
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Crystal Growth & Design
Volume:
19
Issue:
5
ISSN:
1528-7483
Page Range / eLocation ID:
2511 to 2518
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this Perspective, we discuss the strategy of π-loading, i.e. , coordination of two or more strongly π-donating ligands to a single metal center, as it applies to promoting reactivity at group 5 transition metal-imido groups. When multiple π-donor ligands compete to interact with the same symmetrically-available metal d π orbitals, the energy of the imido-based frontier molecular orbitals increases, leading to amplified imido-based reactivity. This strategy is of particular relevance to group 5 metals, as mono(imido) complexes of these metals tend to be inert at the imido group. Electronic structure studies of group 5 bis(imido) complexes are presented, and examples of catalytically and stoichiometrically active group 5 bis(imido) and chalcogenido–imido complexes are reviewed. These examples are intended to encourage future work exploring π-loaded bis(imido) systems of the group 5 triad. 
    more » « less
  2. We describe a novel gold chloride complex supported by an ambiphilic phosphine/xanthylium ligand in which the AuCl moiety interacts with the π + surface of the xanthylium unit as indicated by structural studies. Energy decomposition analyses carried out on a model system indicates the prevalence of non-covalent interactions in which the electrostatic and dispersion terms cumulatively dominate. The presence of these AuCl–π + interactions correlates with the high catalytic activity of this complex in the cyclisation of 2-(phenylethynyl)phenylboronic acid, N -propargyl- t -butylamide, and 2-allyl-2-(2-propynyl)malonate. Comparison with the significantly less active acridinium and the 9-oxa-10-boraanthracene analogues reinforces this conclusion. 
    more » « less
  3. A 9,9-dimethylxanthene-based ligand substituted at the 4- and 5-positions by a phosphine and a xanthylium unit, respectively, has been prepared and converted into an AuCl complex, the structure of which reveals an intramolecular Au–Cl⋯π + interaction. This new ligand platform was also found to support the formation of an unprecedented hydroxytrifluoroborate derivative featuring a “hard/soft” mismatched Au– μ (OH)–BF 3 motif. Despite its surprising stability, this gold hydroxytrifluoroborate complex is a remarkably potent carbophilic catalyst which readily activates alkynes, without activator. 
    more » « less