skip to main content


This content will become publicly available on June 1, 2024

Title: Amplitude analysis of the D+ → π−π+π+ decay and measurement of the π−π+ S-wave amplitude
A bstract An amplitude analysis of the D + → π − π + π + decay is performed with a sample corresponding to 1.5 fb − 1 of integrated luminosity of pp collisions at a centre-of-mass energy $$ \sqrt{s} $$ s = 8 TeV collected by the LHCb detector in 2012. The sample contains approximately six hundred thousand candidates with a signal purity of 95%. The resonant structure is studied through a fit to the Dalitz plot where the π − π + S-wave amplitude is extracted as a function of π − π + mass, and spin-1 and spin-2 resonances are included coherently through an isobar model. The S-wave component is found to be dominant, followed by the ρ (770) 0 π + and f 2 (1270) π + components. A small contribution from the ω (782) → π − π + decay is seen for the first time in the D + → π − π + π + decay.  more » « less
Award ID(s):
2102879
NSF-PAR ID:
10429416
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2023
Issue:
6
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Achieving a molecular-level understanding of how the structures and compositions of metal–organic frameworks (MOFs) influence their charge carrier concentration and charge transport mechanism—the two key parameters of electrical conductivity—is essential for the successful development of electrically conducting MOFs, which have recently emerged as one of the most coveted functional materials due to their diverse potential applications in advanced electronics and energy technologies. Herein, we have constructed four new alkali metal (Na, K, Rb, and Cs) frameworks based on an electron-rich tetrathiafulvalene tetracarboxylate (TTFTC) ligand, which formed continuous π-stacks, albeit with different π–π-stacking and S⋯S distances ( d π–π and d S⋯S ). These MOFs also contained different amounts of aerobically oxidized TTFTC˙ + radical cations that were quantified by electron spin resonance (ESR) spectroscopy. Density functional theory calculations and diffuse reflectance spectroscopy demonstrated that depending on the π–π-interaction and TTFTC˙ + population, these MOFs enjoyed varying degrees of TTFTC/TTFTC˙ + intervalence charge transfer (IVCT) interactions, which commensurately affected their electronic and optical band gaps and electrical conductivity. Having the shortest d π–π (3.39 Å) and the largest initial TTFTC˙ + population (∼23%), the oxidized Na-MOF 1-ox displayed the narrowest band gap (1.33 eV) and the highest room temperature electrical conductivity (3.6 × 10 −5 S cm −1 ), whereas owing to its longest d π–π (3.68 Å) and a negligible TTFTC˙ + population, neutral Cs-MOF 4 exhibited the widest band gap (2.15 eV) and the lowest electrical conductivity (1.8 × 10 −7 S cm −1 ). The freshly prepared but not optimally oxidized K-MOF 2 and Rb-MOF 3 initially displayed intermediate band gaps and conductivity, however, upon prolonged aerobic oxidation, which raised the TTFTC˙ + population to saturation levels (∼25 and 10%, respectively), the resulting 2-ox and 3-ox displayed much narrower band gaps (∼1.35 eV) and higher electrical conductivity (6.6 × 10 −5 and 4.7 × 10 −5 S cm −1 , respectively). The computational studies indicated that charge movement in these MOFs occurred predominantly through the π-stacked ligands, while the experimental results displayed the combined effects of π–π-interactions, TTFTC˙ + population, and TTFTC/TTFTC˙ + IVCT interaction on their electronic and optical properties, demonstrating that IVCT interactions between the mixed-valent ligands could be exploited as an effective design strategy to develop electrically conducting MOFs. 
    more » « less
  2. A bstract The first full angular analysis of the $$ {B}^0\to {D}^{\ast -}{D}_s^{\ast +} $$ B 0 → D ∗ − D s ∗ + decay is performed using 6 fb − 1 of pp collision data collected with the LHCb experiment at a centre-of-mass energy of 13 TeV. The $$ {D}_s^{\ast +}\to {D}_s^{+}\gamma $$ D s ∗ + → D s + γ and D * − → $$ {\overline{D}}^0{\pi}^{-} $$ D ¯ 0 π − vector meson decays are used with the subsequent $$ {D}_s^{+} $$ D s + → K + K − π + and $$ {\overline{D}}^0 $$ D ¯ 0 → K + π − decays. All helicity amplitudes and phases are measured, and the longitudinal polarisation fraction is determined to be f L = 0 . 578 ± 0 . 010 ± 0 . 011 with world-best precision, where the first uncertainty is statistical and the second is systematic. The pattern of helicity amplitude magnitudes is found to align with expectations from quark-helicity conservation in B decays. The ratio of branching fractions [ℬ( $$ {B}^0\to {D}^{\ast -}{D}_s^{\ast +} $$ B 0 → D ∗ − D s ∗ + ) × ℬ( $$ {D}_s^{\ast +}\to {D}_s^{+}\gamma $$ D s ∗ + → D s + γ )] / ℬ( B 0 → D * − $$ {D}_s^{+} $$ D s + ) is measured to be 2 . 045 ± 0 . 022 ± 0 . 071 with world-best precision. In addition, the first observation of the Cabibbo-suppressed B s → D * − $$ {D}_s^{+} $$ D s + decay is made with a significance of seven standard deviations. The branching fraction ratio ℬ( B s → D * − $$ {D}_s^{+} $$ D s + ) / ℬ( B 0 → D * − $$ {D}_s^{+} $$ D s + ) is measured to be 0 . 049 ± 0 . 006 ± 0 . 003 ± 0 . 002, where the third uncertainty is due to limited knowledge of the ratio of fragmentation fractions. 
    more » « less
  3. A bstract Measurements of CP observables in B ± → D (*) K ± and B ± → D (*) π ± decays are presented, where D (∗) indicates a neutral D or D ∗ meson that is an admixture of meson and anti-meson states. Decays of the D (∗) meson to the Dπ 0 and Dγ final states are partially reconstructed without inclusion of the neutral pion or photon. Decays of the D meson are reconstructed in the K ± π ∓ , K + K − , and π + π − final states. The analysis uses a sample of charged B mesons produced in proton-proton collisions and collected with the LHCb experiment, corresponding to integrated luminosities of 2.0, 1.0, and 5.7 fb − 1 taken at centre-of-mass energies of 7, 8, and 13 TeV, respectively. The measurements of partially reconstructed B ± → D (*) K ± and B ± → D (∗) π ± with D → K ∓ π ± decays are the first of their kind, and a first observation of the B ± → $$ {\left(D{\pi}^0\right)}_{D^{\ast }}{\pi}^{\pm } $$ D π 0 D ∗ π ± decay is made with a significance of 6.1 standard deviations. All CP observables are measured with world-best precision, and in combination with other LHCb results will provide strong constraints on the CKM angle γ . 
    more » « less
  4. null (Ed.)
    A bstract We present a search for the dark photon A ′ in the B 0 → A ′ A ′ decays, where A ′ subsequently decays to e + e − , μ + μ − , and π + π − . The search is performed by analyzing 772 × 10 6 $$ B\overline{B} $$ B B ¯ events collected by the Belle detector at the KEKB e + e − energy-asymmetric collider at the ϒ(4 S ) resonance. No signal is found in the dark photon mass range 0 . 01 GeV /c 2 ≤ m A ′ ≤ 2 . 62 GeV /c 2 , and we set upper limits of the branching fraction of B 0 → A ′ A ′ at the 90% confidence level. The products of branching fractions, $$ \mathrm{\mathcal{B}}\left({B}^0\to A^{\prime }A^{\prime}\right)\times \mathrm{\mathcal{B}}{\left(A\prime \to {e}^{+}{e}^{-}\right)}^2 $$ ℬ B 0 → A ′ A ′ × ℬ A ′ → e + e − 2 and $$ \mathrm{\mathcal{B}}\left({B}^0\to A^{\prime }A^{\prime}\right)\times \mathrm{\mathcal{B}}{\left(A\prime \to {\mu}^{+}{\mu}^{-}\right)}^2 $$ ℬ B 0 → A ′ A ′ × ℬ A ′ → μ + μ − 2 , have limits of the order of 10 − 8 depending on the A ′ mass. Furthermore, considering A ′ decay rate to each pair of charged particles, the upper limits of $$ \mathrm{\mathcal{B}}\left({B}^0\to A^{\prime }A^{\prime}\right) $$ ℬ B 0 → A ′ A ′ are of the order of 10 − 8 –10 − 5 . From the upper limits of $$ \mathrm{\mathcal{B}}\left({B}^0\to A^{\prime }A^{\prime}\right) $$ ℬ B 0 → A ′ A ′ , we obtain the Higgs portal coupling for each assumed dark photon and dark Higgs mass. The Higgs portal couplings are of the order of 10 − 2 –10 − 1 at $$ {m}_{h\prime}\simeq {m}_{B^0} $$ m h ′ ≃ m B 0 ± 40 MeV /c 2 and 10 − 1 –1 at $$ {m}_{h\prime}\simeq {m}_{B^0} $$ m h ′ ≃ m B 0 ± 3 GeV /c 2 . 
    more » « less
  5. Abstract The multihadron decays $$ {\Lambda}_b^0 $$ Λ b 0 → D + pπ−π− and $$ {\Lambda}_b^0 $$ Λ b 0 → D * + pπ−π− are observed in data corresponding to an integrated luminosity of 3 fb − 1 , collected in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV by the LHCb detector. Using the decay $$ {\Lambda}_b^0 $$ Λ b 0 → $$ {\Lambda}_c^{+} $$ Λ c + π + π − π − as a normalisation channel, the ratio of branching fractions is measured to be $$ \frac{\mathcal{B}\left({\Lambda}_b^0\to {D}^{+}p{\pi}^{-}{\pi}^{-}\right)}{\mathcal{B}\left({\Lambda}_b^0\to {\Lambda}_c^0{\pi}^{+}{\pi}^{-}{\pi}^{-}\right)}\times \frac{\mathcal{B}\left({D}^{+}\to {K}^{-}{\pi}^{+}{\pi}^{+}\right)}{\mathcal{B}\left({\Lambda}_c^0\to {pK}^{-}{\pi}^{-}\right)}=\left(5.35\pm 0.21\pm 0.16\right)\%, $$ B Λ b 0 → D + p π − π − B Λ b 0 → Λ c 0 π + π − π − × B D + → K − π + π + B Λ c 0 → pK − π − = 5.35 ± 0.21 ± 0.16 % , where the first uncertainty is statistical and the second systematic. The ratio of branching fractions for the $$ {\Lambda}_b^0 $$ Λ b 0 → D *+ pπ − π − and $$ {\Lambda}_b^0 $$ Λ b 0 → D + pπ − π − decays is found to be $$ \frac{\mathcal{B}\left({\Lambda}_b^0\to {D}^{\ast +}p{\pi}^{-}{\pi}^{-}\right)}{\mathcal{B}\left({\Lambda}_b^0\to {D}^{+}p{\pi}^{-}{\pi}^{-}\right)}\times \left(\mathcal{B}\left({D}^{\ast +}\to {D}^{+}{\pi}^0\right)+\mathcal{B}\left({D}^{\ast +}\to {D}^{+}\gamma \right)\right)=\left(61.3\pm 4.3\pm 4.0\right)\%. $$ B Λ b 0 → D ∗ + p π − π − B Λ b 0 → D + p π − π − × B D ∗ + → D + π 0 + B D ∗ + → D + γ = 61.3 ± 4.3 ± 4.0 % . 
    more » « less