skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Plant Invasion Has Limited Impact on Soil Microbial α-Diversity: A Meta-Analysis
Plant invasion has proven to be a significant driver of ecosystem change, and with the increased probability of invasion due to globalization, agricultural practices and other anthropogenic causes, it is crucial to understand its impact across multiple trophic levels. With strong linkages between above and belowground processes, the response of soil microorganisms to plant invasion is the next logical step in developing our conceptual understanding of this complex system. In our study, we utilized a meta-analytical approach to better understand the impacts of plant invasion on soil microbial diversity. We synthesized 70 independent studies with 23 unique invaders across multiple ecosystem types to search for generalizable trends in soil microbial α-diversity following invasion. When possible, soil nutrient metrics were also collected in an attempt to understand the contribution of nutrient status shifts on microbial α-diversity. Our results show plant invasion to have highly heterogenous and limited impacts on microbial α-diversity. When taken together, our study indicates soil microbial α-diversity to remain constant following invasion, contrary to the aboveground counterparts. As our results suggest a decoupling in patterns of below and aboveground diversity, future work is needed to examine the drivers of microbial diversity patterns following invasion.  more » « less
Award ID(s):
1655726
PAR ID:
10148027
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Diversity
Volume:
12
Issue:
3
ISSN:
1424-2818
Page Range / eLocation ID:
112
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT As the range of bark beetles expands into new forests and woodlands, the need to understand their effects on multiple trophic levels becomes increasingly important. To date, much attention has been paid to the aboveground processes affected by bark beetle infestation, with a focus on photoautotrophs and ecosystem level processes. However, indirect effects of bark beetle on belowground processes, especially the structure and function of soil microbiota remains largely a black box. Our study examined the impacts of bark beetle-induced tree mortality on soil microbial community structure and function using high-throughput sequencing of the soil bacterial and fungal communities and measurements of extracellular enzyme activities. The results suggest bark beetle infestation affected edaphic conditions through increased soil water content, pH, electrical conductivity, and carbon/nitrogen ratio and altered bulk and rhizosphere soil microbial community structure and function. Finally, increased enzymatic activity suggests heightened microbial decomposition following bark beetle infestation. With this increase in enzymatic activity, nutrients trapped in organic substrates may become accessible to seedlings and potentially alter the trajectory of forest regeneration. Our results indicate the need for incorporation of microbial processes into ecosystem level models. IMPORTANCE Belowground impacts of bark beetle infestation have not been explored as thoroughly as their aboveground counterparts. In order to accurately model impacts of bark beetle-induced tree mortality on carbon and nutrient cycling and forest regeneration, the intricacies of soil microbial communities must be examined. In this study, we investigated the structure and function of soil bacterial and fungal communities following bark beetle infestation. Our results show bark beetle infestation to impact soil conditions, as well as soil microbial community structure and function. 
    more » « less
  2. Belowground organisms play critical roles in maintaining multiple ecosystem processes, including plant productivity, decomposition, and nutrient cycling. Despite their importance, however, we have a limited understanding of how and why belowground biodiversity (bacteria, fungi, protists, and invertebrates) may change as soils develop over centuries to millennia (pedogenesis). Moreover, it is unclear whether belowground biodiversity changes during pedogenesis are similar to the patterns observed for aboveground plant diversity. Here we evaluated the roles of resource availability, nutrient stoichiometry, and soil abiotic factors in driving belowground biodiversity across 16 soil chronosequences (from centuries to millennia) spanning a wide range of globally distributed ecosystem types. Changes in belowground biodiversity during pedogenesis followed two main patterns. In lower-productivity ecosystems (i.e., drier and colder), increases in belowground biodiversity tracked increases in plant cover. In more productive ecosystems (i.e., wetter and warmer), increased acidification during pedogenesis was associated with declines in belowground biodiversity. Changes in the diversity of bacteria, fungi, protists, and invertebrates with pedogenesis were strongly and positively correlated worldwide, highlighting that belowground biodiversity shares similar ecological drivers as soils and ecosystems develop. In general, temporal changes in aboveground plant diversity and belowground biodiversity were not correlated, challenging the common perception that belowground biodiversity should follow similar patterns to those of plant diversity during ecosystem development. Taken together, our findings provide evidence that ecological patterns in belowground biodiversity are predictable across major globally distributed ecosystem types and suggest that shifts in plant cover and soil acidification during ecosystem development are associated with changes in belowground biodiversity over centuries to millennia. 
    more » « less
  3. Abstract Imaging spectroscopy provides the opportunity to incorporate leaf and canopy optical data into ecological studies, but the extent to which remote sensing of vegetation can enhance the study of belowground processes is not well understood. In terrestrial systems, aboveground and belowground vegetation quantity and quality are coupled, and both influence belowground microbial processes and nutrient cycling. We hypothesized that ecosystem productivity, and the chemical, structural and phylogenetic‐functional composition of plant communities would be detectable with remote sensing and could be used to predict belowground plant and soil processes in two grassland biodiversity experiments: the BioDIV experiment at Cedar Creek Ecosystem Science Reserve in Minnesota and the Wood River Nature Conservancy experiment in Nebraska. We tested whether aboveground vegetation chemistry and productivity, as detected from airborne sensors, predict soil properties, microbial processes and community composition. Imaging spectroscopy data were used to map aboveground biomass, green vegetation cover, functional traits and phylogenetic‐functional community composition of vegetation. We examined the relationships between the image‐derived variables and soil carbon and nitrogen concentration, microbial community composition, biomass and extracellular enzyme activity, and soil processes, including net nitrogen mineralization. In the BioDIV experiment—which has low overall diversity and productivity despite high variation in each—belowground processes were driven mainly by variation in the amount of organic matter inputs to soils. As a consequence, soil respiration, microbial biomass and enzyme activity, and fungal and bacterial composition and diversity were significantly predicted by remotely sensed vegetation cover and biomass. In contrast, at Wood River—where plant diversity and productivity were consistently higher—belowground processes were driven mainly by variation in the quality of aboveground inputs to soils. Consequently, remotely sensed functional, chemical and phylogenetic composition of vegetation predicted belowground extracellular enzyme activity, microbial biomass, and net nitrogen mineralization rates but aboveground biomass (or cover) did not. The contrasting associations between the quantity (productivity) and quality (composition) of aboveground inputs with belowground soil attributes provide a basis for using imaging spectroscopy to understand belowground processes across productivity gradients in grassland systems. However, a mechanistic understanding of how above and belowground components interact among different ecosystems remains critical to extending these results broadly. 
    more » « less
  4. Abstract Global climate and land use change are causing woody plant encroachment in arctic, alpine, and arid/semi‐arid ecosystems around the world, yet our understanding of the belowground impacts of this phenomenon is limited. We conducted a globally distributed field study of 13 alpine sites across four continents undergoing woody plant encroachment and sampled soils from both woody encroached and nearby herbaceous plant community types. We found that woody plant encroachment influenced soil microbial richness and community composition across sites based on multiple factors including woody plant traits, site level climate, and abiotic soil conditions. In particular, root symbiont type was a key determinant of belowground effects, as Nitrogen‐fixing woody plants had higher soil fungal richness, while Ecto/Ericoid mycorrhizal species had higher soil bacterial richness and symbiont types had distinct soil microbial community composition. Woody plant leaf traits indirectly influenced soil microbes through their impact on soil abiotic conditions, primarily soil pH and C:N ratios. Finally, site‐level climate affected the overall magnitude and direction of woody plant influence, as soil fungal and bacterial richness were either higher or lower in woody encroached versus herbaceous soils depending on mean annual temperature and precipitation. All together, these results document global impacts of woody plant encroachment on soil microbial communities, but highlight that multiple biotic and abiotic pathways must be considered to scale up globally from site‐ and species‐level patterns. Considering both the aboveground and belowground effects of woody encroachment will be critical to predict future changes in alpine ecosystem structure and function and subsequent feedbacks to the global climate system. 
    more » « less
  5. null (Ed.)
    Despite recent advances, we still do not understand how chronic nutrient enrichment impacts coastal plant community structure and function. We aimed to clarify such impacts by testing for differences in ecosystem productivity and multiple community metrics in response to fertilization. We established plots in 2015 consisting of control (C), nitrogen (N), phosphorus (P), and nitrogen + phosphorus (NP) treatments in a mid-Atlantic coastal grassland. In 2017 we collected aboveground biomass, functional traits, and species abundance for each plot. Our findings indicate a synergistic co-limitation, such that NP plots were more productive than all other treatments. A combination of traits responsible for competition and nutrient uptake (i.e., height and δ15N) caused trait-based divergence of N and NP plots from C and P plots. Functional trait-based composition patterns differed from species composition and lifeform abundance patterns, highlighting complexities of community response to nutrient enrichment. While trait-based functional alpha-diversity did not differ among nutrient treatments, it was positively correlated with biomass production, suggesting nutrients may impact functional alpha-diversity indirectly through increased productivity. Increased functional alpha-diversity could be a mechanism of co-existence emerging as productivity increases. These results have important implications for understanding how plant communities in low-productivity coastal systems are altered by fertilization. 
    more » « less