skip to main content

Title: Revealing the Decision Making Processes of Chemical Engineering Students in Process Safety Contexts
Process safety incidents, ranging from the relatively minor to the catastrophic, are a major concern in the chemical engineering profession with impacts including lost time incidents, serious personal injury, fatalities, and negative public perception. These events can also have significant impacts on the environment and local infrastructure. However, many of these incidents could be avoided if better process safety management or risk mitigation was employed. For example, the fire and explosion that occurred at ExxonMobil in Baton Rouge was the result of operators manually opening a gearbox due to lack of familiarity with the equipment. This incident could have been avoided if better maintenance or training procedures had been in place, if the operators had recognized the old valve had a different design than the new ones, or if the old valves had been switched to a newer valve design. This accident indicates how process safety incidents can occur due to a series of decisions.
Authors:
; ; ; ; ;
Award ID(s):
1711644
Publication Date:
NSF-PAR ID:
10148158
Journal Name:
Chemical engineering education
Volume:
54
Issue:
1
Page Range or eLocation-ID:
22-30
ISSN:
2165-6428
Sponsoring Org:
National Science Foundation
More Like this
  1. Mobile social media applications ("apps"), such as TikTok (previously Musical.ly), have recently surfaced in news media due to harmful incidents involving young children engaging with strangers through these mobile apps. To better understand children's awareness of online stranger danger and explore their visions for technologies that can help them manage related online risks (e.g., sexual solicitations and cyberbullying), we held two participatory design sessions with 12 children (ages 8-11 years old). We found that children desired varying levels of agency, depending on the severity of the risk. In most cases, they wanted help resolving the issue themselves instead of relying on their parents to do it for them. Children also believed that social media apps should take on more responsibility in promoting online safety for children. We discuss the children's desires for agency, privacy, and automated intelligent assistance and provide novel design recommendations inspired by children.
  2. Process safety is becoming a greater focus of chemical plant design and operation due to the number of incidents involving dangerous chemical accidents. Since its creation nearly 20 years ago, the Chemical Safety Board (CSB) has investigated 130 safety incidents and provided over 800 safety recommendations to operating chemical facilities. Following a gas well blowout in 2018, the CSB gave a recommendation to the American Petroleum Institute (API) to establish recommended practice on alarm management. Similarly, in 2017, the CSB gave a recommendation to Arkema Inc. to update their emergency response training following a hurricane that caused a fire at one of their manufacturing sites. Many times, CSB-led investigations resulted in new regulations and standards that are enforced by the Occupational Safety and Health Administration (OSHA) or the Environmental Protection Agency (EPA). These critical recommendations positively impact not only the plant workers but also the surrounding community and the environment. While these safety measures enhance industrial safety culture, it is important that process safety also be integrated into university-level engineering curricula to promote safety culture while future engineers are still developing. Integrating process safety into the curriculum prepares students by familiarizing them with the difficult decisions they will be requiredmore »to make in professional practice. ABET, the engineering program accreditation body, acknowledges the value of early, appropriate training within their program guidelines “Criteria for Chemical Engineering Curriculum” which states that recognition and assessment of the hazards associated with chemical processes must be included in the curriculum for program accreditation. Based on this requirement, many institutions have taken the approach to integrate process safety into their curriculum using video case studies, adding entire courses to cover hazard identification, and including safety lectures in design courses. A common theme missing from these methods is instruction on how to approach, recognize, and navigate decisions within a process safety context; a lack of this situational awareness was noted as a key element in industrial process safety incidents. Understanding how students approach process safety decisions is important for developing teaching methods and curriculum that will better prepare them for professional practice. As part of this study, we will measure how students rank criteria associated with process safety decisions, and how these prioritizations change after exposure to a process safety decision making intervention. Through this work, we hope to determine how process safety curriculum may be improved to help better prepare students for process safety decisions within industry.« less
  3. The Antarctic scallop Adamussium colbecki may be a crucial paleoenvironmental proxy for Antarctic sea ice during the Holocene. Sea ice can melt annually or persist for multiple years, with implications for the diet and growth of this ecosystem engineer. Subtle growth variations under each sea ice regime could be analyzed using striae (surficial concentric ridges) that putatively form fortnightly in juveniles. Previous work described alternating groups of widely spaced striae (summer) and narrowly spaced striae (winter). Each group may have 12 striae, or a pair of wide and narrow groups (cycle) may have ~ 28; both scenarios suggests approximate tidal (lunar) periodicity in striae formation. However, consistency of striae formation (total striae per valve and group) must be assessed in different environments, as factors such as sea ice or temperature could affect striae growth. We examined striae number, groups, and cycles in juvenile growth (< 50 mm) using scallops collected from two sites in western McMurdo Sound, Antarctica, that differ by sea-ice cover: Explorers Cove (EC) and Bay of Sails (BOS). Both sites have similar summer temperatures (-1.97°C), but EC has multi-annual sea ice whereas BOS has annual sea ice. We predict that annual melt and subsequent phytoplankton blooms likelymore »induce a stronger environmental control than lunar periodicity. Thus, BOS scallops should have equal striae in wide and narrow groups, whereas EC should have fewer striae per wide group and fewer total striae as summer food availability would be greater at BOS and EC valves may cease growth in lower nutrient conditions. Median striae per wide or narrow group was similar at both sites (~12) and median total striae did not differ significantly between sites (EC: 188.5; BOS:183), suggesting striae formation is unaffected by sea ice. Similar median cycles per valve (~5), corroborate previous work that A. colbecki are ~ 5 years old at 50 mm shell height, and ~ 12 striae per group supports lunar periodicity of formation. However, striae per group varied widely (EC: 3–41; BOS 3–38) and 55% of valves had > 182 total striae and 30% had > 208, indicating ages of 7+ and 8+ yrs assuming fortnightly striae formation. Individual striae and group/cycle data contradict each other, calling into question consistent fortnightly striae formation in juvenile A. colbecki.« less
  4. Process safety is at the heart of operation of many chemical processing companies. However, the Chemical Safety Board (CSB) has still documented over 800 investigations of process safety failures since the year 2000. While not all of these incidents were severe, some did lead to employee injuries or death and environmental harm. As a result, chemical engineering companies are increasingly dedicated to process safety through training programs and detailed vigilance as part of their operations practice. AIChE and OSHA also offer courses in process safety to help support the industry. These efforts illustrate the paramount importance that chemical engineering graduates have an appreciation and understanding of process safety as they transition from their degree program into industrial positions. Previous studies have shown that despite difficulties due to course load constraints, process safety has been incorporated into chemical engineering curriculum through either the addition of new courses, incorporation of the content within existing classes, or a combination of the two methods. A review performed in Process Safety Progress suggested that a key step for departments moving forward is to perform an assessment of the process safety culture within their institution in order to determine how faculty and students view process safety.more »An issue with completing this task is the lack of assessment tools that can be used to determine how students are developing their understanding of process safety decision making. This observation led to the development of the Engineering Process Safety Research Instrument (EPSRI). This instrument is modeled after the Defining Issues Test version 2 (DIT2) and the Engineering Ethical Reasoning Instrument (EERI). Similar to these instruments, the EPSRI provides dilemmas, three decisions, and 12 additional considerations that individuals must rate based on their relative importance to their decision making process. The dilemmas developed in the EPSRI are based on case studies and investigations from process safety failures that have occurred in industry to provide a realistic context for the decision making decisions that engineers may be faced with upon employment. The considerations provided after the scenario are derived to reflect pre-conventional, conventional, and post-conventional decision making thinking as described by Kohlberg’s Moral Development Theory. Pre-conventional decision making thinking focuses particularly on what is right/wrong or good/bad from an individual level, whereas post-conventional thinking seeks to determine what is correct from moral and value perspectives at the society level. This WIP paper describes the content validity study conducted while developing the EPSRI. Dilemmas were examined by context experts including professionals in the process industry, chemical engineering departments, and learning sciences field. Content experts reviewed the dilemmas and determined whether they represented accurate examples of process safety decision making that individuals may face in real-world engineering settings. The experts also reviewed the 12 considerations for each dilemma for their accuracy in capturing pre-conventional, conventional and post-conventional thinking. This work represents the first step in the overall instrument validation that will take place over the next academic year.« less
  5. Process safety is at the heart of operation of many chemical processing companies. However, the Chemical Safety Board (CSB) has still documented over 800 investigations of process safety failures since the year 2000. While not all of these incidents were severe, some did lead to employee injuries or death and environmental harm. As a result, chemical engineering companies are increasingly dedicated to process safety through training programs and detailed vigilance as part of their operations practice. AIChE and OSHA also offer courses in process safety to help support the industry. These efforts illustrate the paramount importance that chemical engineering graduates have an appreciation and understanding of process safety as they transition from their degree program into industrial positions. Previous studies have shown that despite difficulties due to course load constraints, process safety has been incorporated into chemical engineering curriculum through either the addition of new courses, incorporation of the content within existing classes, or a combination of the two methods. A review performed in Process Safety Progress suggested that a key step for departments moving forward is to perform an assessment of the process safety culture within their institution in order to determine how faculty and students view process safety.more »An issue with completing this task is the lack of assessment tools that can be used to determine how students are developing their understanding of process safety decision making. This observation led to the development of the Engineering Process Safety Research Instrument (EPSRI). This instrument is modeled after the Defining Issues Test version 2 (DIT2) and the Engineering Ethical Reasoning Instrument (EERI). Similar to these instruments, the EPSRI provides dilemmas, three decisions, and 12 additional considerations that individuals must rate based on their relative importance to their decision making process. The dilemmas developed in the EPSRI are based on case studies and investigations from process safety failures that have occurred in industry to provide a realistic context for the decision making decisions that engineers may be faced with upon employment. The considerations provided after the scenario are derived to reflect pre-conventional, conventional, and post-conventional decision making thinking as described by Kohlberg’s Moral Development Theory. Pre-conventional decision making thinking focuses particularly on what is right/wrong or good/bad from an individual level, whereas post-conventional thinking seeks to determine what is correct from moral and value perspectives at the society level. This WIP paper describes the content validity study conducted while developing the EPSRI. Dilemmas were examined by context experts including professionals in the process industry, chemical engineering departments, and learning sciences field. Content experts reviewed the dilemmas and determined whether they represented accurate examples of process safety decision making that individuals may face in real-world engineering settings. The experts also reviewed the 12 considerations for each dilemma for their accuracy in capturing pre-conventional, conventional and post-conventional thinking. This work represents the first step in the overall instrument validation that will take place over the next academic year.« less