There is tremendous interest in precision medicine as a means to improve patient out- comes by tailoring treatment to individual characteristics. An individualized treatment rule formalizes precision medicine as a map from patient information to a recommended treatment. A treatment rule is defined to be optimal if it maximizes the mean of a scalar outcome in a population of interest, e.g., symptom reduction. However, clinical and intervention scientists often seek to balance multiple and possibly competing outcomes, e.g., symptom reduction and the risk of an adverse event. One approach to precision medicine in this setting is to elicit a composite outcome which balances all competing outcomes; unfortunately, eliciting a composite outcome directly from patients is difficult without a high-quality instrument, and an expert-derived composite outcome may not account for heterogeneity in patient preferences. We propose a new paradigm for the study of precision medicine using observational data that relies solely on the assumption that clinicians are approximately (i.e., imperfectly) making decisions to maximize individual patient utility. Estimated composite outcomes are subsequently used to construct an estimator of an individualized treatment rule which maximizes the mean of patient-specific composite out- comes. The estimated composite outcomes and estimated optimal individualized treatment rule provide new insights into patient preference heterogeneity, clinician behavior, and the value of precision medicine in a given domain. We derive inference procedures for the pro- posed estimators under mild conditions and demonstrate their finite sample performance through a suite of simulation experiments and an illustrative application to data from a study of bipolar depression.
more »
« less
Composer—Visual Cohort Analysis of Patient Outcomes
Objective Visual cohort analysis utilizing electronic health record data has become an important tool in clinical assessment of patient outcomes. In this article, we introduce Composer, a visual analysis tool for orthopedic surgeons to compare changes in physical functions of a patient cohort following various spinal procedures. The goal of our project is to help researchers analyze outcomes of procedures and facilitate informed decision-making about treatment options between patient and clinician. Methods In collaboration with orthopedic surgeons and researchers, we defined domain-specific user requirements to inform the design. We developed the tool in an iterative process with our collaborators to develop and refine functionality. With Composer, analysts can dynamically define a patient cohort using demographic information, clinical parameters, and events in patient medical histories and then analyze patient-reported outcome scores for the cohort over time, as well as compare it to other cohorts. Using Composer's current iteration, we provide a usage scenario for use of the tool in a clinical setting. Conclusion We have developed a prototype cohort analysis tool to help clinicians assess patient treatment options by analyzing prior cases with similar characteristics. Although Composer was designed using patient data specific to orthopedic research, we believe the tool is generalizable to other healthcare domains. A long-term goal for Composer is to develop the application into a shared decision-making tool that allows translation of comparison and analysis from a clinician-facing interface into visual representations to communicate treatment options to patients.
more »
« less
- Award ID(s):
- 1751238
- PAR ID:
- 10148255
- Date Published:
- Journal Name:
- Applied Clinical Informatics
- Volume:
- 10
- Issue:
- 02
- ISSN:
- 1869-0327
- Page Range / eLocation ID:
- 278 to 285
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Pharmacogenomic (PGx) biomarkers integrated using machine learning can be embedded within the electronic health record (EHR) to provide clinicians with individualized predictions of drug treatment outcomes. Currently, however, drug alerts in the EHR are largely generic (not patient‐specific) and contribute to increased clinician stress and burnout. Improving the usability of PGx alerts is an urgent need. Therefore, this work aimed to identify principles for optimal PGx alert design through a health‐system‐wide, mixed‐methods study. Clinicians representing multiple practices and care settings (N = 1062) in urban, rural, and underserved regions were invited to complete an electronic survey comparing the usability of three drug alerts for citalopram, as a case study. Alert 1 contained a generic warning of pharmacogenomic effects on citalopram metabolism. Alerts 2 and 3 provided patient‐specific predictions of citalopram efficacy with varying depth of information. Primary outcomes included the System's Usability Scale score (0–100 points) of each alert, the perceived impact of each alert on stress and decision‐making, and clinicians' suggestions for alert improvement. Secondary outcomes included the assessment of alert preference by clinician age, practice type, and geographic setting. Qualitative information was captured to provide context to quantitative information. The final cohort comprised 305 geographically and clinically diverse clinicians. A simplified, individualized alert (Alert 2) was perceived as beneficial for decision‐making and stress compared with a more detailed version (Alert 3) and the generic alert (Alert 1) regardless of age, practice type, or geographic setting. Findings emphasize the need for clinician‐guided design of PGx alerts in the era of digital medicine.more » « less
-
Patient management is not based on a single decision. Rather, it is dynamic: based on a sequence of decisions, with therapeutic adjustments made over time. Adjustments are personalized: tailored to individual patients as new information becomes available. However, strategies allowing for such adjustments are infrequently studied. Traditional antibiotic trials are often nonpragmatic, comparing drugs for definitive therapy when drug susceptibilities are known. COMparing Personalized Antibiotic StrategieS (COMPASS) is a trial design that compares strategies consistent with clinical practice. Strategies are decision rules that guide empiric and definitive therapy decisions. Sequential, multiple-assignment, randomized (SMART) COMPASS allows evaluation when there are multiple, definitive therapy options. SMART COMPASS is pragmatic, mirroring clinical, antibiotic-treatment decision-making and addressing the most relevant issue for treating patients: identification of the patient-management strategy that optimizes the ultimate patient outcomes. SMART COMPASS is valuable in the setting of antibiotic resistance, when therapeutic adjustments may be necessary due to resistance.more » « less
-
null (Ed.)Background Decision aid developers have to convey complex task-specific numeric information in a way that minimizes bias and promotes understanding of the options available within a particular decision. Whereas our companion paper summarizes fundamental issues, this article focuses on more complex, task-specific aspects of presenting numeric information in patient decision aids. Methods As part of the International Patient Decision Aids Standards third evidence update, we gathered an expert panel of 9 international experts who revised and expanded the topics covered in the 2013 review working in groups of 2 to 3 to update the evidence, based on their expertise and targeted searches of the literature. The full panel then reviewed and provided additional revisions, reaching consensus on the final version. Results Five of the 10 topics addressed more complex task-specific issues. We found strong evidence for using independent event rates and/or incremental absolute risk differences for the effect size of test and screening outcomes. Simple visual formats can help to reduce common judgment biases and enhance comprehension but can be misleading if not well designed. Graph literacy can moderate the effectiveness of visual formats and hence should be considered in tool design. There is less evidence supporting the inclusion of personalized and interactive risk estimates. Discussion More complex numeric information. such as the size of the benefits and harms for decision options, can be better understood by using incremental absolute risk differences alongside well-designed visual formats that consider the graph literacy of the intended audience. More research is needed into when and how to use personalized and/or interactive risk estimates because their complexity and accessibility may affect their feasibility in clinical practice.more » « less
-
Breast cancer is the most commonly diagnosed cancer type worldwide. Given high survivorship, increased focus has been placed on long-term treatment outcomes and patient quality of life. While breast-conserving surgery (BCS) is the preferred treatment strategy for early-stage breast cancer, anticipated healing and breast deformation (cosmetic) outcomes weigh heavily on surgeon and patient selection between BCS and more aggressive mastectomy procedures. Unfortunately, surgical outcomes following BCS are difficult to predict, owing to the complexity of the tissue repair process and significant patient-to-patient variability. To overcome this challenge, we developed a predictive computational mechanobiological model that simulates breast healing and deformation following BCS. The coupled biochemical-biomechanical model incorporates multi-scale cell and tissue mechanics, including collagen deposition and remodeling, collagen-dependent cell migration and contractility, and tissue plastic deformation. Available human clinical data evaluating cavity contraction and histopathological data from an experimental porcine lumpectomy study were used for model calibration. The computational model was successfully fit to data by optimizing biochemical and mechanobiological parameters through Gaussian process surrogates. The calibrated model was then applied to define key mechanobiological parameters and relationships influencing healing and breast deformation outcomes. Variability in patient characteristics including cavity-to-breast volume percentage and breast composition were further evaluated to determine effects on cavity contraction and breast cosmetic outcomes, with simulation outcomes aligning well with previously reported human studies. The proposed model has the potential to assist surgeons and their patients in developing and discussing individualized treatment plans that lead to more satisfying post-surgical outcomes and improved quality of life.more » « less
An official website of the United States government

