skip to main content


Title: Computational Mathematical Analysis Of Different Stent Geometries And Arterial Wall Response In Tortuous Coronary Artery
The biological response of a coronary artery can be assessed measuring the radial stress of the arterial wall, which depend on the location, arterial tortuosity, and cardiac cycle. We sought to study the radial stress and investigate which geometric distribution of stent struts is associated with favorable biologic response in tortuous coronary arteries.  more » « less
Award ID(s):
1853340
NSF-PAR ID:
10148598
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Circulation
Volume:
140
Issue:
Suppl_1
ISSN:
1642-4379
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The biological response of a coronary artery can be assessed measuring the radial stress of the arterial wall, which depend on the location, arterial tortuosity, and cardiac cycle. We sought to study the radial stress and investigate which geometric distribution of stent struts is associated with favorable biologic response in tortuous coronary arteries. 
    more » « less
  2. Abstract Purpose . Laboratory models of human arterial tissues are advantageous to examine the mechanical response of blood vessels in a simplified and controllable manner. In the present study, we investigated three silicone-based materials for replicating the mechanical properties of human arteries documented in the literature. Methods . We performed uniaxial tensile tests up to rupture on Sylgard184, Sylgard170 and DowsilEE-3200 under different curing conditions and obtained their True (Cauchy) stress-strain behavior and Poisson’s ratios by means of digital image correlation (DIC). For each formulation, we derived the constitutive parameters of the 3-term Ogden model and designed numerical simulations of tubular models under a radial pressure of 250 mmHg. Results . Each material exhibits evident non-linear hyperelasticity and dependence on the curing condition. Sylgard184 is the stiffest formulation, with the highest shear moduli and ultimate stresses at relative low strains ( μ 184  = 0.52–0.88 MPa, σ 184  = 15.90–16.54 MPa, ε 184  = 0.72–0.96). Conversely, Sylgard170 and DowsilEE-3200 present significantly lower shear moduli and ultimate stresses that are closer to data reported for arterial tissues ( μ 170  = 0.33–0.7 MPa σ 170  = 2.61–3.67 MPa, ε 170  = 0.69–0.81; μ dow = 0.02–0.09 MPa σ dow = 0.83–2.05 MPa, ε dow = 0.91–1.05). Under radial pressure, all formulations except DowsilEE-3200 at 1:1 curing ratio undergo circumferential stresses that remain in the elastic region with values ranging from 0.1 to 0.18 MPa. Conclusion . Sylgard170 and DowsilEE-3200 appear to better reproduce the rupture behavior of vascular tissues within their typical ultimate stress and strain range. Numerical models demonstrate that all three materials achieve circumferential stresses similar to human common carotid arteries (Sommer et al 2010), making these formulations suited for cylindrical laboratory models under physiological and supraphysiological loading. 
    more » « less
  3. With the arterial wall modeled as an initially-tensioned thin-walled orthotropic tube, this study aims to analyze radial and axial motion of the arterial wall and thereby reveal the role of axial motion and two initial tensions of the arterial wall in arterial pulse wave propagation. By incorporating related clinical findings into the pulse wave theory in the literature, a theoretical study is conducted on arterial pulse wave propagation with radial and axial wall motion. Since the Young wave is excited by pulsatile pressure and is examined in clinical studies, commonly measured pulsatile parameters in the Young wave are expressed in terms of pulsatile pressure and their values are calculated with the well-established values of circumferential elasticity (E) and initial tension (T0) and assumed values of axial elasticity (Ex) and initial tension (Tx0) at the ascending aorta and the carotid artery. The corresponding values with exclusion of axial wall motion are also calculated. Comparison of the calculated results between inclusion and exclusion of axial wall motion indicates that 1) axial wall motion does not affect radial wall motion and other commonly measured pulsatile parameters, except wall shear stress; 2) axial wall motion is caused by wall shear stress and radial wall displacement gradient with a factor of (Tx0T0), and enables axial power transmission through the arterial wall; and 3) while radial wall motion reflects E and T0, axial wall motion reflects Ex and (Tx0T0). 
    more » « less
  4. Abstract This study examines radial and axial displacement of the arterial wall under the influence of harmonics and wave reflection for the role of axial wall displacement in pulsatile wave propagation. The arterial wall is modeled as an initially-tensioned thin-walled orthotropic tube. In conjunction with three pulsatile parameters in blood flow, a free wave propagation analysis is conducted on the governing equations of the arterial wall and no-slip conditions at the blood-wall interface to obtain the frequency equation and pulsatile parameter expressions under different harmonics. The influence of wave reflection is then added to pulsatile parameter expressions. With the harmonic values of measured pulsatile pressure and blood flow rate at the ascending aorta in the literature, the waveforms of radial wall displacement, axial wall displacement, and wall shear stress are calculated under different orthotropicity and axial initial tension. The developed theory and calculated results indicate that (1) difference in waveform between blood flow rate, wall shear stress, and axial wall displacement is caused by harmonics, rather than wave reflection; (2) Axial wall displacement does not affect blood flow rate, radial wall displacement, and wall shear stress; (3) Besides wall shear stress, radial wall displacement gradient also contributes to axial wall displacement and its contribution is adjusted by axial initial tension; (4) different wave reflections only noticeably affect the maximum and minimum values of wall shear stress; and (5) The amplitude and waveform of axial wall displacement are predominantly dictated by axial elasticity and axial initial tension, respectively. 
    more » « less
  5. This work is aimed to establish engineering theories of the coupled longitudinal and radial motion of the arterial wall. By treating the arterial wall as a piano string in the longitudinal direction and as a viscoelastic material in the circumferential direction, and considering pulsatile pressure and wall shear stress from axial blood flow in an artery, the fully-formed governing equations of the coupled motion of the arterial wall are obtained and are related to the engineering theories of axial blood flow for a unified engineering understanding of blood circulation in the cardiovascular (CV) system. The longitudinal wall motion and the radial wall motion are essentially a longitudinal elastic wave and a transverse elastic wave, respectively, traveling along the arterial tree, with their own propagation velocities dictated by the physical properties and geometrical parameters of the arterial wall. The longitudinal initial tension is essential for generating a transverse elastic wave in the arterial wall to accompany the pulsatile pressure wave in axial blood flow. Under aging and subclinical atherosclerosis, propagation of the two elastic waves and coupling of the two elastic waves weakens and consequently might undermine blood circulation. 
    more » « less