skip to main content


Title: Intermolecular vibrational energy transfer enabled by microcavity strong light–matter coupling

Selective vibrational energy transfer between molecules in the liquid phase, a difficult process hampered by weak intermolecular forces, is achieved through polaritons formed by strong coupling between cavity photon modes and donor and acceptor molecules. Using pump-probe and two-dimensional infrared spectroscopy, we found that the excitation of the upper polariton, which is composed mostly of donors, can efficiently relax to the acceptors within ~5 picoseconds. The energy-transfer efficiency can be further enhanced by increasing the cavity lifetime, suggesting that the energy transfer is a polaritonic process. This vibrational energy-transfer pathway opens doors for applications in remote chemistry, sensing mechanisms, and vibrational polariton condensation.

 
more » « less
Award ID(s):
1848215
PAR ID:
10149019
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Association for the Advancement of Science (AAAS)
Date Published:
Journal Name:
Science
Volume:
368
Issue:
6491
ISSN:
0036-8075
Page Range / eLocation ID:
p. 665-667
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    For a small fraction of hot CO2molecules immersed in a liquid‐phase CO2thermal bath, classical cavity molecular dynamics simulations show that forming collective vibrational strong coupling (VSC) between the C=O asymmetric stretch of CO2molecules and a cavity mode accelerates hot‐molecule relaxation. This acceleration stems from the fact that polaritons can be transiently excited during the nonequilibrium process, which facilitates intermolecular vibrational energy transfer. The VSC effects on these rates 1) resonantly depend on the cavity mode detuning, 2) cooperatively depend on Rabi splitting, and 3) collectively scale with the number of hot molecules. For larger cavity volumes, the average VSC effect per molecule can remain meaningful for up toN≈104molecules forming VSC. Moreover, the transiently excited lower polariton prefers to relax by transferring its energy to the tail of the molecular energy distribution rather than distributing it equally to all thermal molecules. As far as the parameter dependence is concerned, the vibrational relaxation data presented here appear analogous to VSC catalysis in Fabry–Pérot microcavities.

     
    more » « less
  2. Abstract

    For a small fraction of hot CO2molecules immersed in a liquid‐phase CO2thermal bath, classical cavity molecular dynamics simulations show that forming collective vibrational strong coupling (VSC) between the C=O asymmetric stretch of CO2molecules and a cavity mode accelerates hot‐molecule relaxation. This acceleration stems from the fact that polaritons can be transiently excited during the nonequilibrium process, which facilitates intermolecular vibrational energy transfer. The VSC effects on these rates 1) resonantly depend on the cavity mode detuning, 2) cooperatively depend on Rabi splitting, and 3) collectively scale with the number of hot molecules. For larger cavity volumes, the average VSC effect per molecule can remain meaningful for up toN≈104molecules forming VSC. Moreover, the transiently excited lower polariton prefers to relax by transferring its energy to the tail of the molecular energy distribution rather than distributing it equally to all thermal molecules. As far as the parameter dependence is concerned, the vibrational relaxation data presented here appear analogous to VSC catalysis in Fabry–Pérot microcavities.

     
    more » « less
  3. null (Ed.)
    We use classical cavity molecular dynamics simulations to investigate the effect of optical cavity environment on vibrational energy transfer and relaxation. For a small fraction of vibrationally hot CO2 molecules immersed in a liquid-phase CO2 thermal bath, in a cavity that supports a cavity mode in resonance with the CO asymmetric stretch vibration, forming collective vibrational strong coupling (VSC) and a cavity mode accelerates hot molecule relaxation. This acceleration stems from the fact that polaritons can be transiently excited during the nonequilibrium process, which facilitates intermolecular vibrational energy transfer. The VSC effects on these rates (i) resonantly depend on the cavity mode detuning, (ii) cooperatively depend on Rabi splitting, and (iii) collectively scale with the number of hot molecules. This behavior weakens with increasing cavity size (at constant molecular density), that is, constant Rabi splitting) but remains meaningful up to cavities containing 10^4 molecules 
    more » « less
  4. Abstract

    Coherence delocalization has been investigated on a coupled‐cavity molecular polariton platform in time, frequency, and spatial domains, enabled by ultrafast two‐dimensional infrared hyperspectral imaging. Unidirectional coherence delocalization (coherence prepared in one cavity transferred to another cavity) has been observed in frequency and real space. This directionality is enabled by the dissipation of delocalized photon from high‐energy to low‐energy modes, described by Lindblad dynamics. Further experiments show that when coherences are directly prepared between polaritons from different cavities, only energetically nearby polaritons can form coherences that survive the long‐range environmental fluctuation. Together with the Lindblad dynamics, this result implies that coherences delocalize through a one‐step mechanism where photons transfer from one cavity to another, shedding light to coherence evolution in natural and artificial quantum systems. This new optical platform based on molecular vibrational polariton thus demonstrates a way of combining photon and molecular modes to simulate coherence dynamics in the infrared regime.

     
    more » « less
  5. Under vibrational strong coupling (VSC), the formation of molecular polaritons may significantly modify the photo-induced or thermal properties of molecules. In an effort to understand these intriguing modifications, both experimental and theoretical studies have focused on the ultrafast dynamics of vibrational polaritons. Here, following our recent work [Li et al., J. Chem. Phys. 154, 094124 (2021)], we systematically study the mechanism of polariton relaxation for liquid CO 2 under a weak external pumping. Classical cavity molecular dynamics (CavMD) simulations confirm that polariton relaxation results from the combined effects of (i) cavity loss through the photonic component and (ii) dephasing of the bright-mode component to vibrational dark modes as mediated by intermolecular interactions. The latter polaritonic dephasing rate is proportional to the product of the weight of the bright mode in the polariton wave function and the spectral overlap between the polariton and dark modes. Both these factors are sensitive to parameters such as the Rabi splitting and cavity mode detuning. Compared to a Fermi’s golden rule calculation based on a tight-binding harmonic model, CavMD yields a similar parameter dependence for the upper polariton relaxation lifetime but sometimes a modest disagreement for the lower polariton. We suggest that this disagreement results from polariton-enhanced molecular nonlinear absorption due to molecular anharmonicity, which is not included in our analytical model. We also summarize recent progress on probing nonreactive VSC dynamics with CavMD. 
    more » « less