We investigate the dynamics of a magnetoelastic robot with a dipolar magnetic head and a slender elastic body as it performs undulatory strokes and burrows through water-saturated granular beds. The robot is actuated by an oscillating magnetic field and moves forward when the stroke amplitude increases above a critical threshold. By visualizing the medium, we show that the undulating body fluidizes the bed, resulting in the appearance of a dynamic burrow, which rapidly closes in behind the moving robot as the medium loses energy. We investigate the applicability of Lighthill's elongated body theory of fish locomotion, and estimate the contribution of thrust generated by the undulating body and the drag incorporating the granular volume fraction-dependent effective viscosity of the medium. The projected speeds are found to be consistent with the measured speeds over a range of frequencies and amplitudes above the onset of forward motion. However, systematic deviations are found to grow with increasing driving, pointing to a need for further sophisticated modeling of the medium-structure interactions.
more »
« less
Burrowing dynamics of aquatic worms in soft sediments
We investigate the dynamics of Lumbriculus variegatus in water-saturated sediment beds to understand limbless locomotion in the benthic zone found at the bottom of lakes and oceans. These slender aquatic worms are observed to perform elongation–contraction and transverse undulatory strokes in both water-saturated sediments and water. Greater drag anisotropy in the sediment medium is observed to boost the burrowing speed of the worm compared to swimming in water with the same stroke using drag-assisted propulsion. We capture the observed speeds by combining the calculated forms based on resistive-force theory of undulatory motion in viscous fluids and a dynamic anchor model of peristaltic motion in the sediments. Peristalsis is found to be effective for burrowing in noncohesive sediments which fill in rapidly behind the moving body inside the sediment bed. Whereas the undulatory stroke is found to be effective in water and in shallow sediment layers where anchoring is not possible to achieve peristaltic motion. We show that such dual strokes occur as well in the earthworm Eisenia fetida which inhabits moist sediments that are prone to flooding. Our analysis in terms of the rheology of the medium shows that the dual strokes are exploited by organisms to negotiate sediment beds that may be packed heterogeneously and can be used by active intruders to move effectively from a fluid through the loose bed surface layer which fluidizes easily to the well-consolidated bed below.
more »
« less
- Award ID(s):
- 1805398
- PAR ID:
- 10149094
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 116
- Issue:
- 51
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- 25569 to 25574
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We investigate the escape dynamics of oligochaeta Lumbriculus variegatus by confining them to a quasi-2D circular chamber with a narrow exit passage. The worms move by performing undulatory and peristaltic strokes and use their head to actively probe their surroundings. We show that the worms follow the chamber boundary with occasional reversals in direction and with velocities determined by the orientation angle of the body with respect to the boundary. The average time needed to reach the passage decreases with its width before approaching a constant, consistent with a boundary-following search strategy. We model the search dynamics as a persistent random walk along the boundary and demonstrate that the head increasingly skips over the passage entrance for smaller passage widths due to body undulations. The simulations capture the observed exponential time-distributions taken to reach the exit and their mean as a function of width when starting from random locations. Even after the head penetrates the passage entrance, we find that the worm does not always escape because the head withdraws rhythmically back into the chamber over distances set by the dual stroke amplitudes. Our study highlights the importance of boundary following and body strokes in determining how active matter escapes from enclosed spaces.more » « less
-
Abstract Alongshore current‐supported turbidity currents (ACSTCs) are a subclass of wave‐ and current‐supported turbidity currents. They are one of the agents responsible for the dispersal of the river‐borne sediments on the continental shelf, which constitutes a major phenomenon controlling the geomorphic evolution of ocean‐basin margins over geological time. Therefore, parameterization of the sediment flux associated with ACSTCs will help its implementation in operational models and quantify the sediment flux budgets on the continental shelf. The velocity structure of ACSTCs and the amount of sediments suspended by them are crucial to determine the suspended sediment flux. This study investigates the velocity structure of a simplified miniature ACSTC over an erodible bed composed of fine sediments. Direct numerical simulations are conducted for various bed erosion parameters and sediment settling velocity. The role of sediment‐induced stable density stratification on the velocity structure of ACSTCs is analyzed. The simulation results indicate that density stratification and the drag coefficient are functions of the product of sediment settling velocity and sediment concentration. The velocity profile was found to deviate toward the alongshore direction with strengthening density stratification, which enhances the drag coefficient. By using the Monin‐Obukhov theory, the drag coefficient associated with the cross‐shelf propagation of ACSTCs is formulated as a function of the Reynolds number, sediment concentration, and sediment settling velocity.more » « less
-
Abstract Streambed biogeochemical processes strongly influence riverine water quality and gaseous emissions. These processes depend largely on flow paths through the hyporheic zone (HZ), the streambed volume saturated with stream water. Boulders and other macroroughness elements are known to induce hyporheic flows in gravel‐bed streams. However, data quantifying the impact of these elements on hyporheic chemistry are lacking. We demonstrate that, in gravel‐bed rivers, the amount of dissolved oxygen (DO) in the bed depends chiefly on changes in bed shape, or morphology, such as the formation of scour and depositional areas, caused by the boulders, among other factors. The study was conducted by comparing DO distributions across different bed states and hydraulic conditions. Our experimental facility replicates conditions observed in natural gravel‐bed streams. We instrumented a section in the bed with DO sensors. Results generally indicate that boulder placement on planar beds has some effects, which are significant at high base flows, on increasing hyporheic oxygen amount compared to the planar case without boulders. Conversely, boulder‐induced morphological changes noticeably and significantly increase the amount of oxygen in the HZ, with the increase depending on sediment inputs during flood flows able to mobilize the sediment. Therefore, streambeds of natural, plane‐bed streams may have deeper oxic zones than previously thought because the presence of boulders and the occurrence of flood flows with varying sediment inputs induce streambed variations among these elements.more » « less
-
null (Ed.)Abstract Rapid ice loss is facilitated by sliding over beds consisting of reworked sediments and erosional products, commonly referred to as till. The dynamic interplay between ice and till reshapes the bed, creating landforms preserved from past glaciations. Leveraging the imprint left by past glaciations as constraints for projecting future deglaciation is hindered by our incomplete understanding of evolving basal slip. Here, we develop a continuum model of water-saturated, cohesive till to quantify the interplay between meltwater percolation and till mobilization that governs changes in the depth of basal slip under fast-moving ice. Our model explains the puzzling variability of observed slip depths by relating localized till deformation to perturbations in pore-water pressure. It demonstrates that variable slip depth is an inherent property of the ice-meltwater-till system, which could help understand why some paleo-landforms like grounding-zone wedges appear to have formed quickly relative to current till-transport rates.more » « less
An official website of the United States government

