Abstract Dissolved Oxygen (DO) fluxes across the air‐water and sediment‐water interface (AWI and SWI) are two major processes that govern the amount of oxygen available to living organisms in aquatic ecosystems. Aquatic vegetation generates different scales of turbulence that change the flow structure and affect gas transfer mechanisms at AWI and SWI. A series of laboratory experiments with rigid cylinder arrays to mimic vegetation was conducted in a recirculating race‐track flume with a lightweight sediment bed. 2D Planar Particle Image Velocimetry was used to characterize the flow field under different submergence ratios and array densities to access the effect of vegetation‐generated turbulence on gas transfer. Gas transfer rate across AWI was determined by DO re‐aeration curves. The effective diffusion coefficient for gas transfer flux across SWI was estimated by the difference between near‐bed and near‐surface DO concentrations. When sediment begins to mobilize, near‐bed suspended sediment provides a negative buoyancy term that increases the critical Reynolds number for the surface gas transfer process according to a modified Surface Renewal model for vegetated flows. A new Reynolds number dependence model using near‐bed turbulent kinetic energy as an indicator is proposed to provide a universal prediction for the interfacial flux across SWI in flows with aquatic vegetation. This study provides critical information and useful models for future studies on water quality management and ecosystem restoration in natural water environments such as lakes, rivers, and wetlands.
more »
« less
This content will become publicly available on July 1, 2026
Impact of boulders and boulder‐induced morphology on oxic volume of the hyporheic zone of plane‐bed rivers
Abstract Streambed biogeochemical processes strongly influence riverine water quality and gaseous emissions. These processes depend largely on flow paths through the hyporheic zone (HZ), the streambed volume saturated with stream water. Boulders and other macroroughness elements are known to induce hyporheic flows in gravel‐bed streams. However, data quantifying the impact of these elements on hyporheic chemistry are lacking. We demonstrate that, in gravel‐bed rivers, the amount of dissolved oxygen (DO) in the bed depends chiefly on changes in bed shape, or morphology, such as the formation of scour and depositional areas, caused by the boulders, among other factors. The study was conducted by comparing DO distributions across different bed states and hydraulic conditions. Our experimental facility replicates conditions observed in natural gravel‐bed streams. We instrumented a section in the bed with DO sensors. Results generally indicate that boulder placement on planar beds has some effects, which are significant at high base flows, on increasing hyporheic oxygen amount compared to the planar case without boulders. Conversely, boulder‐induced morphological changes noticeably and significantly increase the amount of oxygen in the HZ, with the increase depending on sediment inputs during flood flows able to mobilize the sediment. Therefore, streambeds of natural, plane‐bed streams may have deeper oxic zones than previously thought because the presence of boulders and the occurrence of flood flows with varying sediment inputs induce streambed variations among these elements.
more »
« less
- PAR ID:
- 10617897
- Publisher / Repository:
- AGU
- Date Published:
- Journal Name:
- Water Resources Research
- Volume:
- 61
- Issue:
- 7
- ISSN:
- 0043-1397
- Subject(s) / Keyword(s):
- • Boulders expand the hyporheic aerobic zone in plane‐bed rivers under high, yet commonly occurring, flow conditions • Boulder‐induced morphological changes significantly deepen oxygen‐rich zones in otherwise planar gravel‐bed streams • Reduction of upstream sediment supply during floods can enhance hyporheic oxygenation by promoting the formation of boulder‐driven bedform
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Severe wildfire may alter steep mountain streams by increasing peak discharges, elevating sediment and wood inputs into channels, and increasing susceptibility to landslides and debris flows. In the Pacific Northwest, where mean annual precipitation is high and mean fire‐return intervals range from decades to centuries, understanding of steep stream response to fire is limited. We evaluate the hydrologic and geomorphic response of ~100‐m‐long steep stream reaches to the large‐scale and severe 2020 fires in the Western Cascade Range, Oregon. In the two runoff seasons after the fires, peak flows in burned reaches were below the 2‐year recurrence interval flood, a level sufficient to mobilize the median grain size of bed material, but not large enough to mobilize coarser material and reorganize channel morphology. Sediment inputs to study streams consisted of two road‐fill failure landslides, slumps, sheetwash, and minor bank erosion; precipitation thresholds to trigger debris flows were not exceeded in our sites. There was a 50% increase in the number of large wood pieces in burned reaches after the fires. Changes in fluxes of water, sediment, and wood induced shifts in the balance of sediment supply to transport capacity, initiating a sequence of sediment aggradation and bed‐material fining followed by erosion and bed‐material coarsening. Gross channel form showed resilience to change, and an unburned reference reach exhibited little morphologic change. Post‐fire recruitment of large wood will likely have long‐term implications for channel morphology and habitat heterogeneity. Below‐average precipitation during the study period, combined with an absence of extreme precipitation events, was an important control on channel responses. Climate change may have a complex effect on stream response to wildfire by increasing the propensity for both drought and extreme rain events and by altering vegetation recovery patterns.more » « less
-
Abstract In this paper we demonstrate that several ubiquitous hyporheic exchange mechanisms can be represented simply as a one‐dimensional diffusion process, where the diffusivity decays exponentially with depth into the streambed. Based on a meta‐analysis of 106 previously published laboratory measurements of hyporheic exchange (capturing a range of bed morphologies, hydraulic conditions, streambed properties, and experimental approaches) we find that the reference diffusivity and mixing length‐scale are functions of the permeability Reynolds Number and Schmidt Number. These dimensionless numbers, in turn, can be estimated for a particular stream from the median grain size of the streambed and the stream's depth, slope, and temperature. Application of these results to a seminal study of nitrate removal in 72 headwater streams across the United States, reveals: (a) streams draining urban and agricultural landscapes have a diminished capacity for in‐stream and in‐bed mixing along with smaller subsurface storage zones compared to streams draining reference landscapes; (b) under steady‐state conditions nitrate uptake in the streambed is primarily biologically controlled; and (c) median reaction timescales for nitrate removal in the hyporheic zone are 0.5 and 20 hr for uptake by assimilation and denitrification, respectively. While further research is needed, the simplicity and extensibility of the framework described here should facilitate cross‐disciplinary discussions and inform reach‐scale studies of pollutant fate and transport and their scale‐up to watersheds and beyond.more » « less
-
Abstract Mountain rivers often receive sediment in the form of episodic, discrete pulses from a variety of natural and anthropogenic processes. Once emplaced in the river, the movement of this sediment depends on flow, grain size distribution, and channel and network geometry. Here, we simulate downstream bed elevation changes that result from discrete inputs of sediment (∼10,000 m3), differing in volume and grain size distribution, under medium and high flow conditions. We specifically focus on comparing bed responses between mixed and uniform grain size sediment pulses. This work builds on a Lagrangian, bed‐material sediment transport model and applies it to a 27 km reach of the mainstem Nisqually River, Washington, USA. We compare observed bed elevation change and accumulation rates in a downstream lake to simulation results. Then we investigate the magnitude, timing, and persistence of downstream changes due to the introduction of synthetic sediment pulses by comparing the results against a baseline condition (without pulse). Our findings suggest that bed response is primarily influenced by the sediment‐pulse grain size and distribution. Intermediate mixed‐size pulses (∼50% of the median bed gravel size) are likely to have the largest downstream impact because finer sizes translate quickly and coarser sizes (median bed gravel size and larger) disperse slowly. Furthermore, a mixed‐size pulse, with a smaller median grain size than the bed, increases bed mobility more than a uniform‐size pulse. This work has important implications for river management, as it allows us to better understand fluvial geomorphic responses to variations in sediment supply.more » « less
-
Abstract. A comprehensive set of measurements and calculated metricsdescribing physical, chemical, and biological conditions in the rivercorridor is presented. These data were collected in a catchment-wide,synoptic campaign in the H. J. Andrews ExperimentalForest (Cascade Mountains, Oregon, USA) in summer 2016 during low-dischargeconditions. Extensive characterization of 62 sites including surface water,hyporheic water, and streambed sediment was conducted spanning 1st- through5th-order reaches in the river network. The objective of the sample designand data acquisition was to generate a novel data set to support scaling ofriver corridor processes across varying flows and morphologic forms presentin a river network. The data are available at https://doi.org/10.4211/hs.f4484e0703f743c696c2e1f209abb842 (Ward, 2019).more » « less
An official website of the United States government
