skip to main content


Title: Preparation of Macroscopic Block‐Copolymer‐Based Gyroidal Mesoscale Single Crystals by Solvent Evaporation
Abstract

Properties arising from ordered periodic mesostructures are often obscured by small, randomly oriented domains and grain boundaries. Bulk macroscopic single crystals with mesoscale periodicity are needed to establish fundamental structure–property correlations for materials ordered at this length scale (10–100 nm). A solvent‐evaporation‐induced crystallization method providing access to large (millimeter to centimeter) single‐crystal mesostructures, specifically bicontinuous gyroids, in thick films (>100 µm) derived from block copolymers is reported. After in‐depth crystallographic characterization of single‐crystal block copolymer–preceramic nanocomposite films, the structures are converted into mesoporous ceramic monoliths, with retention of mesoscale crystallinity. When fractured, these monoliths display single‐crystal‐like cleavage along mesoscale facets. The method can prepare macroscopic bulk single crystals with other block copolymer systems, suggesting that the method is broadly applicable to block copolymer materials assembled by solvent evaporation. It is expected that such bulk single crystals will enable fundamental understanding and control of emergent mesostructure‐based properties in block‐copolymer‐directed metal, semiconductor, and superconductor materials.

 
more » « less
Award ID(s):
1719875
NSF-PAR ID:
10459540
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
31
Issue:
40
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Mesoscale order can lead to emergent properties including phononic bandgaps or topologically protected states. Block copolymers offer a route to mesoscale periodic architectures, but their use as structure directing agents for metallic materials has not been fully realized. A versatile approach to mesostructured metals via bulk block copolymer self‐assembly derived ceramic templates, is demonstrated. Molten indium is infiltrated into mesoporous, double gyroidal silicon nitride templates under high pressure to yield bulk, 3D periodic nanocomposites as free‐standing monoliths which exhibit emergent quantum‐scale phenomena. Vortices are artificially introduced when double gyroidal indium metal behaves as a type II superconductor, with evidence of strong pinning centers arrayed on the order of the double gyroid lattice size. Sample behavior is reproducible over months, showing high stability. High pressure infiltration of bulk block copolymer self‐assembly based ceramic templates is an enabling tool for studying high‐quality metals with previously inaccessible architectures, and paves the way for the emerging field of block‐copolymer derived quantum metamaterials.

     
    more » « less
  2. Abstract

    Semiconducting mesocrystalline bulk polymer specimens that exhibit near‐intrinsic properties using channel‐die pressing are demonstrated. A predominant edge‐on orientation is obtained for poly(3‐hexylthiophene‐2,5‐diyl) (P3HT) throughout 2 mm‐thick/wide samples. This persistent mesocrystalline arrangement at macroscopic scales allows reliable evaluation of the electronic charge‐transport anisotropy along all three crystallographic axes, with high mobilities found along the π‐stacking. Indeed, charge‐carrier mobilities of up to 2.3 cm2V−1s−1are measured along the π‐stack, which are some of the highest mobilities reported for polymers at low charge‐carrier densities (drop‐cast films display mobilities of maximum ≈10−3cm2V−1s−1). The structural coherence also leads to an unusually well‐defined photoluminescence line‐shape characteristic of an H‐aggregate (measured from the surface perpendicular to the materials flow), rather than the typical HJ‐aggregate feature usually found for P3HT. The approach is widely applicable: to electrical conductors and materials used in n‐type devices, such as poly{[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)} (N2200) where the mesocrystalline structure leads to high electron transport along the polymer backbones (≈1.3 cm2V−1s−1). This versatility and the broad applicability of channel‐die pressing signifies its promise as a straightforward, readily scalable method to fabricate bulk semiconducting polymer structures at macroscopic scales with properties typically accessible only by the tedious growth of single crystals.

     
    more » « less
  3. Abstract

    The directed assembly of conjugated polymers into macroscopic organization with controlled orientation and placement is pivotal in improving device performance. Here, the supramolecular assembly of oriented spherulitic crystals of poly(3‐butylthiophene) surrounding a single carbon nanotube fiber under controlled solvent evaporation of solution‐cast films is reported. Oriented lamellar structures nucleate on the surface of the nanotube fiber in the form of a transcrystalline interphase. The factors influencing the formation of transcrystals are investigated in terms of chemical structure, crystallization temperature, and time. Dynamic process measurements exhibit the linear growth of transcrystals with time. Microstructural analysis of transcrystals reveals individual lamellar organization and crystal polymorphism. The form II modification occurs at low temperatures, while both form I and form II modifications coexist at high temperatures. A possible model is presented to interpret transcrystallization and polymorphism.

     
    more » « less
  4. Abstract

    Block copolymer brushes are of great interest due to their rich phase behavior and value‐added properties compared to homopolymer brushes. Traditional synthesis involves grafting‐to and grafting‐from methods. In this work, a recently developed “polymer‐single‐crystal‐assisted‐grafting‐to” method is applied for the preparation of block copolymer brushes on flat glass surfaces. Triblock copolymer poly(ethylene oxide)‐b‐poly(l‐lactide)‐b‐poly(3‐(triethoxysilyl)propyl methacrylate) (PEO‐b‐PLLA‐b‐PTESPMA) is synthesized with PLLA as the brush morphology‐directing component and PTESPMA as the anchoring block. PEO‐b‐PLLA block copolymer brushes are obtained by chemical grafting of the triblock copolymer single crystals onto a glass surface. The tethering point and overall brush pattern are determined by the single crystal morphology. The grafting density is calculated to be ≈0.36 nm−2from the atomic force microscopy results and is consistent with the theoretic calculation based on the PLLA crystalline lattice. This work provides a new strategy to synthesize well‐defined block copolymer brushes.

     
    more » « less
  5. Abstract

    Mesoporous inorganic particles and hollow spheres are of increasing interest for a broad range of applications, but synthesis approaches are typically material specific, complex, or lack control over desired structures. Here it is reported how combining mesoscale block copolymer (BCP) directed inorganic materials self‐assembly and macroscale spinodal decomposition can be employed in multicomponent BCP/hydrophilic inorganic precursor blends with homopolymers to prepare mesoporous inorganic particles with controlled meso‐ and macrostructures. The homogeneous multicomponent blend solution undergoes dual phase separation upon solvent evaporation. Microphase‐separated (BCP/inorganic precursor)‐domains are confined within the macrophase‐separated majority homopolymer matrix, being self‐organized toward particle shapes that minimize the total interfacial area/energy. The pore orientation and particle shape (solid spheres, oblate ellipsoids, hollow spheres) are tailored by changing the kind of homopolymer matrix and associated enthalpic interactions. Furthermore, the sizes of particle and hollow inner cavity are tailored by changing the relative amount of homopolymer matrix and the rates of solvent evaporation. Pyrolysis yields discrete mesoporous inorganic particles and hollow spheres. The present approach enables a high degree of control over pore structure, orientation, and size (15–44 nm), particle shape, particle size (0.6–3 µm), inner cavity size (120–700 nm), and chemical composition (e.g., aluminosilicates, carbon, and metal oxides).

     
    more » « less