- Award ID(s):
- 1657662
- Publication Date:
- NSF-PAR ID:
- 10149218
- Journal Name:
- Journal of heredity
- Volume:
- 110
- Page Range or eLocation-ID:
- 523–534
- ISSN:
- 1465-7333
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Determining the mechanisms that create and maintain biodiversity is a central question in ecology and evolution. Speciation is the process that creates biodiversity. Speciation is mediated by incompatibilities that lead to reproductive isolation between divergent populations and these incompatibilities can be observed in hybrid zones. Gecko lizards are a speciose clade possessing an impressive diversity of behavioral and morphological traits. In geckos, however, our understanding of the speciation process is negligible. To address this gap, we used genetic sequence data (both mitochondrial and nuclear markers) to revisit a putative hybrid zone between Sphaerodactylus nicholsi and Sphaerodactylus townsendi in Puerto Rico, initially described in 1984. First, we addressed discrepancies in the literature on the validity of both species. Second, we sampled a 10-km-wide transect across the putative hybrid zone and tested explicit predictions about its dynamics using cline models. Third, we investigated potential causes for the hybrid zone using species distribution modeling and simulations; namely, whether unique climatic variables within the hybrid zone might elicit selection for intermediate phenotypes. We find strong support for the species-level status of each species and no evidence of movement, or unique climatic variables near the hybrid zone. We suggest that this narrow hybrid zonemore »
-
Abstract Mitochondria have been known to be involved in speciation through the generation of Dobzhansky–Muller incompatibilities, where functionally neutral co-evolution between mitochondrial and nuclear genomes can cause dysfunction when alleles are recombined in hybrids. We propose that adaptive mitochondrial divergence between populations can not only produce intrinsic (Dobzhansky–Muller) incompatibilities, but could also contribute to reproductive isolation through natural and sexual selection against migrants, post-mating prezygotic isolation, as well as by causing extrinsic reductions in hybrid fitness. We describe how these reproductive isolating barriers can potentially arise through adaptive divergence of mitochondrial function in the absence of mito-nuclear coevolution, a departure from more established views. While a role for mitochondria in the speciation process appears promising, we also highlight critical gaps of knowledge: (1) many systems with a potential for mitochondrially-mediated reproductive isolation lack crucial evidence directly linking reproductive isolation and mitochondrial function; (2) it often remains to be seen if mitochondrial barriers are a driver or a consequence of reproductive isolation; (3) the presence of substantial gene flow in the presence of mito-nuclear incompatibilities raises questions whether such incompatibilities are strong enough to drive speciation to completion; and (4) it remains to be tested how mitochondrial effects on reproductive isolationmore »
-
The rapid evolution of sexual isolation in sympatry has long been associated with reinforcement (i.e., selection to avoid maladaptive hybridization). However, there are many species pairs in sympatry that have evolved rapid sexual isolation without known costs to hybridization. A major unresolved question is what evolutionary processes are involved in driving rapid speciation in such cases. Here, we focus on one such system; the Drosophila athabasca species complex, which is composed of three partially sympatric and interfertile semispecies: WN, EA, and EB. To study speciation in this species complex, we assayed sexual and genomic isolation within and between these semispecies in both sympatric and allopatric populations. First, we found no evidence of reproductive character displacement (RCD) in sympatric zones compared to distant allopatry. Instead, semispecies were virtually completely sexually isolated from each other across their entire ranges. Moreover, using spatial approaches and coalescent demographic simulations, we detected either zero or only weak heterospecific gene flow in sympatry. In contrast, within each semispecies we found only random mating and little population genetic structure, except between highly geographically distant populations. Finally, we determined that speciation in this system is at least an order of magnitude older than previously assumed, with WN divergingmore »
-
BACKGROUND Charles Darwin’s Descent of Man, and Selection in Relation to Sex tackled the two main controversies arising from the Origin of Species: the evolution of humans from animal ancestors and the evolution of sexual ornaments. Most of the book focuses on the latter, Darwin’s theory of sexual selection. Research since supports his conjecture that songs, perfumes, and intricate dances evolve because they help secure mating partners. Evidence is overwhelming for a primary role of both male and female mate choice in sexual selection—not only through premating courtship but also through intimate interactions during and long after mating. But what makes one prospective mate more enticing than another? Darwin, shaped by misogyny and sexual prudery, invoked a “taste for the beautiful” without speculating on the origin of the “taste.” How to explain when the “final marriage ceremony” is between two rams? What of oral sex in bats, cloacal rubbing in bonobos, or the sexual spectrum in humans, all observable in Darwin’s time? By explaining desire through the lens of those male traits that caught his eyes and those of his gender and culture, Darwin elided these data in his theory of sexual evolution. Work since Darwin has focused on howmore »
-
Ecologically divergent selection can lead to the evolution of reproductive isolation through the process of ecological speciation, but the balance of responsible evolutionary forces is often obscured by an inadequate assessment of demographic history and the genetics of traits under selection. Snake venoms have emerged as a system for studying the genetic basis of adaptation because of their genetic tractability and contributions to fitness, and speciation in venomous snakes can be associated with ecological diversification such as dietary shifts and corresponding venom changes. Here, we explored the neurotoxic (type A)–hemotoxic (type B) venom dichotomy and the potential for ecological speciation among Timber Rattlesnake (Crotalus horridus) populations. Previous work identified the genetic basis of this phenotypic difference, enabling us to characterize the roles geography, history, ecology, selection, and chance play in determining when and why new species emerge or are absorbed. We identified significant genetic, proteomic, morphological, and ecological/environmental differences at smaller spatial scales, suggestive of incipient ecological speciation between type A and type B C. horridus. Range-wide analyses, however, rejected the reciprocal monophyly of venom type, indicative of varying intensities of introgression and a lack of reproductive isolation across the range. Given that we have now established the phenotypic distributionsmore »