Abstract Determining the mechanisms that create and maintain biodiversity is a central question in ecology and evolution. Speciation is the process that creates biodiversity. Speciation is mediated by incompatibilities that lead to reproductive isolation between divergent populations and these incompatibilities can be observed in hybrid zones. Gecko lizards are a speciose clade possessing an impressive diversity of behavioral and morphological traits. In geckos, however, our understanding of the speciation process is negligible. To address this gap, we used genetic sequence data (both mitochondrial and nuclear markers) to revisit a putative hybrid zone between Sphaerodactylus nicholsi and Sphaerodactylus townsendi in Puerto Rico, initially described in 1984. First, we addressed discrepancies in the literature on the validity of both species. Second, we sampled a 10-km-wide transect across the putative hybrid zone and tested explicit predictions about its dynamics using cline models. Third, we investigated potential causes for the hybrid zone using species distribution modeling and simulations; namely, whether unique climatic variables within the hybrid zone might elicit selection for intermediate phenotypes. We find strong support for the species-level status of each species and no evidence of movement, or unique climatic variables near the hybrid zone. We suggest that this narrow hybrid zone is geographically stable and is maintained by a combination of dispersal and selection. Thus, this work has identified an extant model system within geckos that that can be used for future investigations detailing genetic mechanisms of reproductive isolation in an understudied vertebrate group.
more »
« less
Persistence of a Geographically-Stable Hybrid Zone in Puerto Rican Dwarf Geckos
Determining the mechanisms that create and maintain biodiversity is a central question in ecology and evolution. Speciation is the process that creates biodiversity. Speciation is mediated by incompatibilities that lead to reproductive isolation between divergent populations and these incompatibilities can be observed in hybrid zones. Gecko lizards are a speciose clade possessing an impressive diversity of behavioral and morphological traits. In geckos, however, our understanding of the speciation process is negligible. To address this gap, we used genetic sequence data (both mitochondrial and nuclear markers) to revisit a putative hybrid zone between Sphaerodactylus nicholsi and Sphaerodactylus townsendi in Puerto Rico, initially described in 1984. First, we addressed discrepancies in the literature on the validity of both species. Second, we sampled a 10-km-wide transect across the putative hybrid zone and tested explicit predictions about its dynamics using cline models. Third, we investigated potential causes for the hybrid zone using species distribution modeling and simulations; namely, whether unique climatic variables within the hybrid zone might elicit selection for intermediate phenotypes. We find strong support for the species-level status of each species and no evidence of movement, or unique climatic variables near the hybrid zone. We suggest that this narrow hybrid zone is geographically stable and is maintained by a combination of dispersal and selection. Thus, this work has identified an extant model system within geckos that that can be used for future investigations detailing genetic mechanisms of reproductive isolation in an understudied vertebrate group.
more »
« less
- Award ID(s):
- 1657662
- PAR ID:
- 10149218
- Date Published:
- Journal Name:
- Journal of heredity
- Volume:
- 110
- ISSN:
- 1465-7333
- Page Range / eLocation ID:
- 523–534
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Wahl, Lindi (Ed.)Dobzhansky and Muller proposed a general mechanism through which microevolution, the substitution of alleles within populations, can cause the evolution of reproductive isolation between populations and, therefore, macroevolution. As allopatric populations diverge, many combinations of alleles differing between them have not been tested by natural selection and may thus be incompatible. Such genetic incompatibilities often cause low fitness in hybrids between species. Furthermore, the number of incompatibilities grows with the genetic distance between diverging populations. However, what determines the rate and pattern of accumulation of incompatibilities remains unclear. We investigate this question by simulating evolution on holey fitness landscapes on which genetic incompatibilities can be identified unambiguously. We find that genetic incompatibilities accumulate more slowly among genetically robust populations and identify two determinants of the accumulation rate: recombination rate and population size. In large populations with abundant genetic variation, recombination selects for increased genetic robustness and, consequently, incompatibilities accumulate more slowly. In small populations, genetic drift interferes with this process and promotes the accumulation of genetic incompatibilities. Our results suggest a novel mechanism by which genetic drift promotes and recombination hinders speciation.more » « less
-
Therkildsen, Nina (Ed.)Abstract Describing how hybrid zones respond to anthropogenic influence can illuminate how the environment regulates both species distributions and reproductive isolation between species. In this study, we analyzed specimens collected from the Passerina cyanea×P. amoena hybrid zone between 2004 and 2007 and between 2019 and 2021 to explore changes in genetic structure over time. This comparison follows a previous study that identified a significant westward shift of the Passerina hybrid zone during the latter half of the twentieth century. A second temporal comparison of hybrid zone genetic structure presents unique potential to describe finer-scale dynamics and to identify potential mechanisms of observed changes more accurately. After concluding that the westward movement of the Passerina hybrid zone has accelerated in recent decades, we investigated potential drivers of this trend by modeling the influence of bioclimatic and landcover variables on genetic structure. We also incorporated eBird data to determine how the distributions of P. cyanea and P. amoena have responded to recent climate and landcover changes. We found that the distribution of P. cyanea in the northern Great Plains has shifted west to track a moving climatic niche, supporting anthropogenic climate change as a key mediator of introgression in this system.more » « less
-
Abstract Determining the genetic architecture of traits involved in adaptation and speciation is one of the key components of understanding the evolutionary mechanisms behind biological diversification. Hybrid zones provide a unique opportunity to use genetic admixture to identify traits and loci contributing to partial reproductive barriers between taxa. Many studies have focused on the temporal dynamics of hybrid zones, but geographical variation in hybrid zones that span distinct ecological contexts has received less attention. We address this knowledge gap by analyzing hybridization and introgression between black-capped and Carolina chickadees in two geographically remote transects across their extensive hybrid zone, one located in eastern and one in central North America. Previous studies demonstrated that this hybrid zone is moving northward as a result of climate change but is staying consistently narrow due to selection against hybrids. In addition, the hybrid zone is moving ~5× slower in central North America compared to more eastern regions, reflecting continent-wide variation in the rate of climate change. We use whole genome sequencing of 259 individuals to assess whether variation in the rate of hybrid zone movement is reflected in patterns of hybridization and introgression, and which genes and genomic regions show consistently restricted introgression in distinct ecological contexts. Our results highlight substantial similarities between geographically remote transects and reveal large Z-linked chromosomal rearrangements that generate measurable differences in the degree of gene flow between transects. We further use simulations and analyses of climatic data to examine potential factors contributing to continental-scale nuances in selection pressures. We discuss our findings in the context of speciation mechanisms and the importance of sex chromosome inversions in chickadees and other species.more » « less
-
Despite the well-known effects of sexual selection on phenotypes, links between this evolutionary process and reproductive isolation, genomic divergence, and speciation have been difficult to establish. We unravel the genetic basis of sexually selected plumage traits to investigate their effects on reproductive isolation in barn swallows. The genetic architecture of sexual traits is characterized by 12 loci on two autosomes and the Z chromosome. Sexual trait loci exhibit signatures of divergent selection in geographic isolation and barriers to gene flow in secondary contact. Linkage disequilibrium between these genes has been maintained by selection in hybrid zones beyond what would be expected under admixture alone. Our findings reveal that selection on coupled sexual trait loci promotes reproductive isolation, providing key empirical evidence for the role of sexual selection in speciation.more » « less
An official website of the United States government

