skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Go west, young bunting: recent climate change drives rapid movement of a Great Plains hybrid zone
Abstract Describing how hybrid zones respond to anthropogenic influence can illuminate how the environment regulates both species distributions and reproductive isolation between species. In this study, we analyzed specimens collected from the Passerina cyanea×P. amoena hybrid zone between 2004 and 2007 and between 2019 and 2021 to explore changes in genetic structure over time. This comparison follows a previous study that identified a significant westward shift of the Passerina hybrid zone during the latter half of the twentieth century. A second temporal comparison of hybrid zone genetic structure presents unique potential to describe finer-scale dynamics and to identify potential mechanisms of observed changes more accurately. After concluding that the westward movement of the Passerina hybrid zone has accelerated in recent decades, we investigated potential drivers of this trend by modeling the influence of bioclimatic and landcover variables on genetic structure. We also incorporated eBird data to determine how the distributions of P. cyanea and P. amoena have responded to recent climate and landcover changes. We found that the distribution of P. cyanea in the northern Great Plains has shifted west to track a moving climatic niche, supporting anthropogenic climate change as a key mediator of introgression in this system.  more » « less
Award ID(s):
1928870
PAR ID:
10600999
Author(s) / Creator(s):
;
Editor(s):
Therkildsen, Nina
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Evolution
Volume:
78
Issue:
11
ISSN:
0014-3820
Page Range / eLocation ID:
1774 to 1789
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Taylor, Scott; Wolf, Jason (Ed.)
    Abstract Hybridization offers insight into speciation and the forces that maintain barriers to reproduction, and hybrid zones provide excellent opportunities to test how environment shapes barriers to reproduction and hybrid fitness. A hybrid zone between the killifish, Fundulus heteroclitus and Fundulus grandis, had been identified in northeastern Florida, although the spatial structure and parameters that affect the distribution of the two species remain unknown. The present study aimed to determine the fine-scale spatial genetic patterns of the hybrid zone to test the hypothesis that species ranges are influenced by changes in dominant vegetation and to determine how differences in reproductive barriers between the two species influence the observed patterns. The area of overlap between the two species spanned ~37 km and showed a mosaic pattern of hybridization, suggesting the spatial structure of the hybrid zone is largely influenced by the environment. Environmental association analysis, however, suggested that while dominant vegetation had a significant influence on the spatial structure of the hybrid zone, a combination of environmental factors was driving the observed patterns. Hybridization tended to be rare at sites where F. heteroclitus was the more abundant species, suggesting that differences in preference for conspecifics can lead to differences in rates of introgression into parental taxa and likely result in a range-shift as opposed to adaptation in the face of climate change. 
    more » « less
  2. Abstract Population demographic changes, alongside landscape, geographic and climate heterogeneity, can influence the timing, stability and extent of introgression where species hybridise. Thus, quantifying interactions across diverged lineages, and the relative contributions of interspecific genetic exchange and selection to divergence at the genome‐wide level is needed to better understand the drivers of hybrid zone formation and maintenance. We used seven latitudinally arrayed transects to quantify the contributions of climate, geography and landscape features to broad patterns of genetic structure across the hybrid zone ofPopulus trichocarpaandP. balsamiferaand evaluated the demographic context of hybridisation over time. We found genetic structure differed among the seven transects. While ancestry was structured by climate, landscape features influenced gene flow dynamics. Demographic models indicated a secondary contact event may have influenced contemporary hybrid zone formation with the origin of a putative hybrid lineage that inhabits regions with higher aridity than either of the ancestral groups. Phylogenetic relationships based on chloroplast genomes support the origin of this hybrid lineage inferred from demographic models based on the nuclear data. Our results point towards the importance of climate and landscape patterns in structuring the contact zones betweenP. trichocarpaandP. balsamiferaand emphasise the value whole genome sequencing can have to advancing our understanding of how neutral processes influence divergence across space and time. 
    more » « less
  3. Landscapes are consistently under pressure from human-induced ecological change, often resulting in shifting species distributions. For some species, changing the geographical breadth of their niche space results in matching range shifts to regions other than those in which they are formally found. In this study, we employ a population genomics approach to assess potential conservation issues arising from purported range expansions into the south Texas Brush Country of two sister species of ducks: mottled (Anas fulvigula) and Mexican (Anas diazi) ducks. Specifically, despite being non-migratory, both species are increasingly being recorded outside their formal ranges, with the northeastward and westward expansions of Mexican and mottled ducks, respectively, perhaps resulting in secondary contact today. We assessed genetic ancestry using thousands of autosomal loci across the ranges of both species, as well as sampled Mexican- and mottled-like ducks from across overlapping regions of south Texas. First, we confirm that both species are indeed expanding their ranges, with genetically pure Western Gulf Coast mottled ducks confirmed as far west as La Salle county, Texas, while Mexican ducks recorded across Texas counties near the USA–Mexico border. Importantly, the first confirmed Mexican × mottled duck hybrids were found in between these regions, which likely represents a recently established contact zone that is, on average, ~100 km wide. We posit that climate- and land use-associated changes, including coastal habitat degradation coupled with increases in artificial habitats in the interior regions of Texas, are facilitating these range expansions. Consequently, continued monitoring of this recent contact event can serve to understand species’ responses in the Anthropocene, but it can also be used to revise operational survey areas for mottled ducks. 
    more » « less
  4. Abstract Studying how genetic variation is structured across space, and how it relates to divergence in phenotypic traits relevant to reproductive isolation, is important for our overall understanding of the speciation process. We used reduced-representation genomic data (ddRAD-seq) to examine patterns of genetic variation across the full distribution of an Andean warbler species complex (Myioborus ornatus–melanocephalus), which includes a known hybrid zone between two strikingly different plumage forms. Genetic structure largely reflects geographic variation in head plumage, some of which corresponds to major topographic barriers in the Andes. We also found evidence of isolation by distance shaping genetic patterns across the group’s broad latitudinal range. We found thatchrysopsandbairdi, two taxa with marked plumage differences that have a known hybrid zone, were characterized by low overall genetic divergence. Based on our cline analyses of both plumage and genomic hybrid indices, this hybrid zone extends for approximately 250 km, where advanced generation hybrids are likely most common. We also identified a slight difference in the centers of the plumage and genomic clines, potentially suggesting the asymmetric introgression ofchrysops-like plumage traits. By studying genetic variation in a phenotypically complex group distributed across a topographically complex area, which includes a hybrid zone, we were able to show how both geographic features and potentially sexually selected plumage traits may play a role in species formation in tropical mountains 
    more » « less
  5. Abstract In a rapidly changing environment, predicting changes in the growth and survival of local populations can inform conservation and management. Plastic responses vary as a result of genetic differentiation within and among species, so accurate rangewide predictions require characterization of genotype-specific reaction norms across the continuum of historic and future climate conditions comprising a species’ range. Natural hybrid zones can give rise to novel recombinant genotypes associated with high phenotypic variability, further increasing the variance of plastic responses within the ranges of the hybridizing species. Experiments that plant replicated genotypes across a range of environments can characterize genotype-specific reaction norms; identify genetic, geographic, and climatic factors affecting variation in climate responses; and make predictions of climate responses across complex genetic and geographic landscapes. The North American hybrid zone ofPopulus trichocarpaandP. balsamiferarepresents a natural system in which reaction norms are likely to vary with underlying genetic variation that has been shaped by climate, geography, and introgression. Here, we leverage a dataset containing 45 clonal genotypes of varying ancestry from this natural hybrid zone, planted across 17 replicated common garden experiments spanning a broad climatic range, including sites warmer than the natural species ranges. Growth and mortality were measured over two years, enabling us to model reaction norms for each genotype across these tested environments. Genomic variation associated with species ancestry and northern/southern regions significantly influenced growth across environments, with genotypic variation in reaction norms reflecting a trade-off between cold tolerance and growth. Using modeled reaction norms for each genotype, we predicted that genotypes with moreP. trichocarpaancestry may gain an advantage under warmer climates. Spatial shifts of the hybrid zone could facilitate the spread of beneficial alleles into novel climates. These results highlight that genotypic variation in responses to temperature will have landscape-level effects. 
    more » « less