skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Population genetic structure and species delimitation of a widespread, Neotropical dwarf gecko, Gonatodes humeralis (Sphaerodactylidae: Gekkota)
Amazonia harbors the greatest biological diversity on Earth. One trend that spans Amazonian taxa is that most taxonomic groups either exhibit broad geographic ranges or small restricted ranges. This is likely because many traits that determine a species range size, such as dispersal ability or body size, are autocorrelated. As such, it is rare to find groups that exhibit both large and small ranges. Once identified, however, these groups provide a powerful system for isolating specific traits that influence species distributions. One group of terrestrial vertebrates, gecko lizards, tends to exhibit small geographic ranges. Despite one exception, this applies to the Neotropical dwarf geckos of the genus Gonatodes. This exception, Gonatodes humeralis, has a geographic distribution almost 1,000,000 km2 larger than the combined ranges of its 30 congeners. As the smallest member of its genus and a gecko lizard more generally, G. humeralis is an unlikely candidate to be a wide-ranged Amazonian taxon. To test whether or not G. humeralis is one or more species, we generated molecular genetic data using restriction-site associated sequencing (RADseq) and traditional Sanger methods for samples from across its range and conducted a phylogeographic study. We conclude that G. humeralis is, in fact, a single species across its contiguous range in South America. Thus, Gonatodes is a unique clade among Neotropical taxa, containing both wide-ranged and range-restricted taxa, which provides empiricists with a powerful model system to correlate complex species traits and distributions. Additionally, we provide evidence to support species-level divergence of the allopatric population from Trinidad and we resurrect the name Gonatodes ferrugineus from synonymy for this population.  more » « less
Award ID(s):
1657662
PAR ID:
10149219
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Molecular phylogenetics and evolution
Volume:
133
ISSN:
1095-9513
Page Range / eLocation ID:
54–66
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. From the recently discovered Montbrook locality, Levy County, Florida (late Miocene; late Hemphillian land mammal age), a complete coracoid and nearly complete scapula represent a large heron that we name Taphophoyx hodgei new genus and species. While the phylogenetic affinities of T. hodgei are not well resolved, the tiger-herons Tigrisoma spp. or boat-billed heron Cochlearius cochlearius (both Neotropical) may be the closest living relative(s) of Taphophoyx, based in large part on several shared characters of the facies articularis clavicularis and facies articularis humeralis. Nevertheless, the coracoid of Taphophoyx has a uniquely prominent facies articularis humeralis and a uniquely sterno-ventral surface of corpus coracoidei. All 21 taxa of birds recorded thus far from Montbrook (mostly aquatic forms such as swans, ducks, geese, grebes, cormorants, ibises, sandpipers, etc.) probably represent extinct species, although Taphophoyx hodgei is the only one assigned to an extinct genus. 
    more » « less
  2. High species richness and endemism in tropical mountains are recognized as major contributors to the latitudinal diversity gradient. The processes underlying mountain speciation, however, are largely untested. The prevalence of steep ecogeographic gradients and the geographic isolation of populations by topographic features are predicted to promote speciation in mountains. We evaluate these processes in a species-rich Neotropical genus of understory herbs that range from the lowlands to montane forests and have higher species richness in topographically complex regions. We ask whether climatic niche divergence, geographic isolation, and pollination shifts differ between mountain-influenced and lowland Amazonian sister pairs inferred from a 756-gene phylogeny. Neotropical Costus ancestors diverged in Central America during a period of mountain formation in the last 3 My with later colonization of Amazonia. Although climatic divergence, geographic isolation, and pollination shifts are prevalent in general, these factors don’t differ between mountain-influenced and Amazonian sister pairs. Despite higher climatic niche and species diversity in the mountains, speciation modes in Costus appear similar across regions. Thus, greater species richness in tropical mountains may reflect differences in colonization history, diversification rates, or the prevalence of rapidly evolving plant life forms, rather than differences in speciation mode. 
    more » « less
  3. Emerson, B. (Ed.)
    High species richness and endemism in tropical mountains are recognized as major contributors to the latitudinal diversity gradient. The processes underlying mountain speciation, however, are largely untested. The prevalence of steep ecogeographic gradients and the geographic isolation of populations by topographic features are predicted to promote speciation in mountains. We evaluate these processes in a species‐rich Neotropical genus of understory herbs that range from the lowlands to montane forests and have higher species richness in topographically complex regions. We ask whether climatic niche divergence, geographic isolation, and pollination shifts differ between mountain‐influenced and lowland Amazonian sister pairs inferred from a 756‐gene phylogeny. Neotropical Costus ancestors diverged in Central America during a period of mountain formation in the last 3 million years with later colonization of Amazonia. Although climatic divergence, geographic isolation, and pollination shifts are prevalent in general, these factors do not differ between mountain‐influenced and Amazonian sister pairs. Despite higher climatic niche and species diversity in the mountains, speciation modes in Costus appear similar across regions. Thus, greater species richness in tropical mountains may reflect differences in colonization history, diversification rates, or the prevalence of rapidly evolving plant life forms, rather than differences in speciation mode. 
    more » « less
  4. null (Ed.)
    Phytolith analysis is increasingly being applied in studies of Neotropical forest history and associated preColumbian human influences, especially in the Amazon Basin. In order to enlarge modern reference collections that are integral to these efforts, we analyzed phytoliths from 360 species of mainly eudicotyledons from 80 different families and 10 Arecaceae species. Many are native to Amazonia and have not been studied previously. Production and morphological characteristics of the phytoliths were assessed along with their survivability in ancient soils and sediments. Our analysis affirmed the validity of family- and genus-level diagnostic phytoliths from arboreal and other woody growth taxa uncovered in previous research. It also revealed new diagnostic phytoliths from both well- and little-studied families of importance in the Amazonian forest, and affirmed the utility of other types such as spheroids and sclereids for documenting arboreal/woody growth more generally in paleoecological research. Although where pollen is recovered it will continue to document a greater number of arboreal/woody species, phytoliths can identify a diversity of those taxa in the Amazonian and Neotropical forest at large–including when pollen does not– with family, genus, and possibly even species-level diagnostics. 
    more » « less
  5. Abstract AimAngiosperm epiphytes have long been reported to have larger geographic ranges than terrestrial species, despite evidence of their outstanding diversity and endemism. This apparent contradiction calls for further investigation of epiphytes' poorly understood range size patterns. Here, we address the question of whether epiphytes have larger geographic ranges and different vulnerability to extinction than terrestrial species. LocationThe Atlantic Forest of Brazil, a global centre of tropical epiphyte diversity with relatively well‐known flora, where we can estimate the geographic ranges of a large number of species with reasonable confidence. Time periodOccurrence records from the 17th century to the year 2021. Major taxa studiedFlowering plants (angiosperms). MethodsWe downloaded, processed and cleaned all occurrence records for the angiosperm species native to the Atlantic Forest of Brazil available in the speciesLink network and the Global Biodiversity Information Facility. We estimated the extent of occurrence and area of occupancy of 12,679 native flowering plants, including 1251 epiphytic species. We compared the geographic ranges of epiphytes and other life forms at broad (e.g. Angiosperms, Monocots) and more restricted taxonomic scales (e.g. individual families), assuming species are independent entities and also when accounting for species phylogenetic dependence. ResultsWe found that epiphytes have among the smallest geographic ranges of flowering plants. We found no consistent evidence that epiphytism leads to differences in geographic ranges between close relatives. However, both epiphytes and non‐epiphytes in epiphyte‐rich lineages have small ranges and likely a high vulnerability to extinction. Main ConclusionsOur findings contrast with the long‐held hypothesis that epiphytes have larger geographic ranges than terrestrial species. Epiphytes and their close relatives share many diversification mechanisms and ecological adaptations (‘epiphyte‐like traits’), which probably explain why both sets of species have small range sizes and high vulnerability to extinction. 
    more » « less