skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: New mysteries and challenges from the Toothbrush relic: wideband observations from 550 MHz to 8 GHz
Context. Radio relics are diffuse extended synchrotron sources that originate from shock fronts induced by galaxy cluster mergers. The particle acceleration mechanism at the shock fronts is still under debate. The galaxy cluster 1RXS J0603.3+4214 hosts one of the most intriguing examples of radio relics, known as the Toothbrush. Aims. In order to understand the mechanism(s) that accelerate(s) relativistic particles in the intracluster medium, we investigated the spectral properties of large-scale diffuse extended sources in the merging galaxy cluster 1RXS J0603.3+4214. Methods. We present new wideband radio continuum observations made with uGMRT and VLA. Our new observations, in combination with previously published data, allowed us to carry out a detailed high-spatial-resolution spectral and curvature analysis over a wide range of frequencies. Results. The integrated spectrum of the Toothbrush closely follows a power law over almost two orders of magnitude in frequency, with a spectral index of −1.16 ± 0.02. We do not find any evidence of spectral steepening below 8 GHz. The subregions of the Toothbrush also exhibit near-perfect power laws and identical spectral slopes, suggesting that the observed spectral index is rather set by the distribution of Mach numbers which may have a similar shape at different parts of the shock front. Indeed, numerical simulations show an intriguing similar spectral index, indicating that the radio spectrum is dominated by the average over the inhomogeneities within the shock, with most of the emission coming from the tail of the Mach number distribution. In contrast to the Toothbrush, the spectra of the fainter relics show a high-frequency steepening. Moreover, the integrated spectrum of the halo also follows a power law from 150 MHz to 3 GHz with a spectral index of −1.16 ± 0.04. We do not find any evidence for spectral curvature, not even in subareas of the halo. This suggest a homogeneous acceleration throughout the cluster volume. Between the “brush” region of the Toothbrush and the halo, the color-color analysis reveals emission that was consistent with an overlap between the two different spectral regions. Conclusions. None of the relic structures, that is, the Toothbrush as a whole or its subregions or the other two fainter relics, show spectral shapes consistent with a single injection of relativistic electrons, such as at a shock, followed by synchrotron aging in a relatively homogeneous environment. Inhomogeneities in some combination of Mach number, magnetic field strength, and projection effects dominate the observed spectral shapes.  more » « less
Award ID(s):
1714205
PAR ID:
10149409
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
636
ISSN:
0004-6361
Page Range / eLocation ID:
A30
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Radio relics are diffuse, extended synchrotron sources that originate from shock fronts generated during cluster mergers. The massive merging galaxy cluster MACS J0717.5+3745 hosts one of the more complex relics known to date. We present upgraded Giant Metrewave Radio Telescope band 3 (300−500 MHz) and band 4 (550−850 MHz) observations. These new observations, combined with published VLA and the new LOFAR HBA data, allow us to carry out a detailed, high spatial resolution spectral analysis of the relic over a broad range of frequencies. The integrated spectrum of the relic closely follows a power law between 144 MHz and 5.5 GHz with a mean spectral slope α  = −1.16 ± 0.03. Despite the complex morphology of this relic, its subregions and the other isolated filaments also follow power-law behaviors, and show similar spectral slopes. Assuming diffusive shock acceleration, we estimated a dominant Mach number of ∼3.7 for the shocks that make up the relic. A comparison with recent numerical simulations suggests that in the case of radio relics, the slopes of the integrated radio spectra are determined by the Mach number of the accelerating shock, with α nearly constant, namely between −1.13 and −1.17, for Mach numbers 3.5 − 4.0. The spectral shapes inferred from spatially resolved regions show curvature, we speculate that the relic is inclined along the line of sight. The locus of points in the simulated color-color plots changes significantly with the relic viewing angle. We conclude that projection effects and inhomogeneities in the shock Mach number dominate the observed spectral properties of the relic in this complex system. Based on the new observations we raise the possibility that the relic and a narrow-angle-tailed radio galaxy are two different structures projected along the same line of sight. 
    more » « less
  2. null (Ed.)
    ABSTRACT We present the results of deep Chandra and XMM–Newton observations of a complex merging galaxy cluster Abell 2256 (A2256) that hosts a spectacular radio relic (RR). The temperature and metallicity maps show clear evidence of a merger between the western subcluster (SC) and the primary cluster (PC). We detect five X-ray surface brightness edges. Three of them near the cluster centre are cold fronts (CFs): CF1 is associated with the infalling SC; CF2 is located in the east of the PC; and CF3 is located to the west of the PC core. The other two edges at cluster outskirts are shock fronts (SFs): SF1 near the RR in the NW has Mach numbers derived from the temperature and the density jumps, respectively, of MT = 1.62 ± 0.12 and Mρ = 1.23 ± 0.06; SF2 in the SE has MT = 1.54 ± 0.05 and Mρ = 1.16 ± 0.13. In the region of the RR, there is no evidence for the correlation between X-ray and radio substructures, from which we estimate an upper limit for the inverse-Compton emission, and therefore set a lower limit on the magnetic field (∼ 450 kpc from PC centre) of B > 1.0 μG for a single power-law electron spectrum or B > 0.4 μG for a broken power-law electron spectrum. We propose a merger scenario including a PC, an SC, and a group. Our merger scenario accounts for the X-ray edges, diffuse radio features, and galaxy kinematics, as well as projection effects. 
    more » « less
  3. Context. During their lifetimes, galaxy clusters grow through the accretion of matter from the filaments of the large-scale structure and from mergers with other clusters. These mergers release a large amount of energy into the intracluster medium (ICM) through merger shocks and turbulence. These phenomena are associated with the formation of radio sources known as radio relics and radio halos, respectively. Radio relics and halos are unique proxies for studying the complex properties of these dynamically active regions of clusters and the microphysics of the ICM more generally. Aims. Abell 3667 is a spectacular example of a merging system that hosts a large pair of radio relics. Due to its proximity ( z  = 0.0553) and large mass, the system enables the study of these sources to a uniquely high level of detail. However, being located at Dec = −56.8°, the cluster could only be observed with a limited number of radio facilities. Methods. We observed Abell 3667 with MeerKAT as part of the MeerKAT Galaxy Cluster Legacy Survey. We used these data to study the large-scale emission of the cluster, including its polarisation and spectral properties. The results were then compared with simulations. Results. We present the most detailed view of the radio relic system in Abell 3667 to date, with a resolution reaching 3 kpc. The relics are filled with a network of filaments with different spectral and polarisation properties that are likely associated with multiple regions of particle acceleration and local enhancements of the magnetic field. Conversely, the magnetic field in the space between filaments has strengths close to what would be expected in unperturbed regions at the same cluster-centric distance. Comparisons with magnetohydrodynamic cosmological and Lagrangian simulations support the idea of filaments as multiple acceleration sites. Our observations also confirm the presence of an elongated radio halo, developed in the wake of the bullet-like sub-cluster that merged from the south-east. Finally, we associate the process of magnetic draping with a thin polarised radio source surrounding the remnant of the bullet’s cool core. Conclusions. Our observations have unveiled the complexity of the interplay between the thermal and non-thermal components in the most active regions of a merging cluster. Both the intricate internal structure of radio relics and the direct detection of magnetic draping around the merging bullet are powerful examples of the non-trivial magnetic properties of the ICM. Thanks to its sensitivity to polarised radiation, MeerKAT will be transformational in the study of these complex phenomena. 
    more » « less
  4. null (Ed.)
    ABSTRACT We present the first high-resolution 230–470 MHz map of the Perseus cluster obtained with the Karl G. Jansky Very Large Array. The high dynamic range and resolution achieved have allowed the identification of previously unknown structures in this nearby galaxy cluster. New hints of sub-structures appear in the inner radio lobes of the brightest cluster galaxy NGC 1275. The spurs of radio emission extending into the outer X-ray cavities, inflated by past nuclear outbursts, are seen for the first time at these frequencies, consistent with spectral aging. Beyond NGC 1275, we also analyse complex radio sources harboured in the cluster. Two new distinct, narrowly collimated jets are visible in IC 310, consistent with a highly projected narrow-angle tail radio galaxy infalling into the cluster. We show how this is in agreement with its blazar-like behaviour, implying that blazars and bent-jet radio galaxies are not mutually exclusive. We report the presence of filamentary structures across the entire tail of NGC 1265, including two new pairs of long filaments in the faintest bent extension of the tail. Such filaments have been seen in other cluster radio sources such as relics and radio lobes, indicating that there may be a fundamental connection between all these radio structures. We resolve the very narrow and straight tail of CR 15 without indication of double jets, so that the interpretation of such head–tail sources is yet unclear. Finally, we note that only the brightest western parts of the mini-halo remain, near NGC 1272 and its bent double jets. 
    more » « less
  5. ABSTRACT We present highly sensitive measurements taken with MeerKAT at 1280 MHz as well as archival Green Bank Telescope (GBT), Murchison Widefield Array, and Very Large Array (VLA) images at 333, 88, and 74 MHz. We report the detection of synchrotron radio emission from the infrared dark cloud associated with the halo of the Sgr B complex on a scale of ∼60 pc. A strong spatial correlation between low-frequency radio continuum emission and dense molecular gas, combined with spectral index measurements, indicates enhanced synchrotron emission by cosmic ray electrons. Correlation of the Fe i 6.4 keV K α line and synchrotron emission provides compelling evidence that the low energy cosmic ray electrons are responsible for producing the K α line emission. The observed synchrotron emission within the halo of the Sgr B cloud complex has a mean spectral index α ∼ −1 ± 1, which gives the magnetic field strength ∼100 µG for cloud densities nH = 104–105 cm−3, and estimated cosmic ray ionization rates between 10−13 and 10−14 s−1. Furthermore, the energy spectrum of primary cosmic ray electrons is constrained to be E−3 ± 1 for typical energies of few hundred MeV. The extrapolation of this spectrum to higher energies is consistent with X-ray and γ-ray emission detected from this cloud. These measurements have important implications on the role that high cosmic ray electron fluxes at the Galactic centre play in production of radio synchrotron emission, the Fe i K α line emission at 6.4 keV, and ∼GeV γ-ray emission throughout the Central Molecular Zone. 
    more » « less