- Award ID(s):
- 1714205
- NSF-PAR ID:
- 10326555
- Date Published:
- Journal Name:
- Astronomy & Astrophysics
- Volume:
- 659
- ISSN:
- 0004-6361
- Page Range / eLocation ID:
- A146
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
MeerKAT’s large number (64) of 13.5 m diameter antennas, spanning 8 km with a densely packed 1 km core, create a powerful instrument for wide-area surveys, with high sensitivity over a wide range of angular scales. The MeerKAT Galaxy Cluster Legacy Survey (MGCLS) is a programme of long-track MeerKAT L -band (900−1670 MHz) observations of 115 galaxy clusters, observed for ∼6−10 h each in full polarisation. The first legacy product data release (DR1), made available with this paper, includes the MeerKAT visibilities, basic image cubes at ∼8″ resolution, and enhanced spectral and polarisation image cubes at ∼8″ and 15″ resolutions. Typical sensitivities for the full-resolution MGCLS image products range from ∼3−5 μJy beam −1 . The basic cubes are full-field and span 2° × 2°. The enhanced products consist of the inner 1.2° × 1.2° field of view, corrected for the primary beam. The survey is fully sensitive to structures up to ∼10′ scales, and the wide bandwidth allows spectral and Faraday rotation mapping. Relatively narrow frequency channels (209 kHz) are also used to provide H I mapping in windows of 0 < z < 0.09 and 0.19 < z < 0.48. In this paper, we provide an overview of the survey and the DR1 products, including caveats for usage. We present some initial results from the survey, both for their intrinsic scientific value and to highlight the capabilities for further exploration with these data. These include a primary-beam-corrected compact source catalogue of ∼626 000 sources for the full survey and an optical and infrared cross-matched catalogue for compact sources in the primary-beam-corrected areas of Abell 209 and Abell S295. We examine dust unbiased star-formation rates as a function of cluster-centric radius in Abell 209, extending out to 3.5 R 200 . We find no dependence of the star-formation rate on distance from the cluster centre, and we observe a small excess of the radio-to-100 μm flux ratio towards the centre of Abell 209 that may reflect a ram pressure enhancement in the denser environment. We detect diffuse cluster radio emission in 62 of the surveyed systems and present a catalogue of the 99 diffuse cluster emission structures, of which 56 are new. These include mini-halos, halos, relics, and other diffuse structures for which no suitable characterisation currently exists. We highlight some of the radio galaxies that challenge current paradigms, such as trident-shaped structures, jets that remain well collimated far beyond their bending radius, and filamentary features linked to radio galaxies that likely illuminate magnetic flux tubes in the intracluster medium. We also present early results from the H I analysis of four clusters, which show a wide variety of H I mass distributions that reflect both sensitivity and intrinsic cluster effects, and the serendipitous discovery of a group in the foreground of Abell 3365.more » « less
-
null (Ed.)The pre-merging system of galaxy clusters Abell 3391-Abell 3395 located at a mean redshift of 0.053 has been observed at 1 GHz in an ASKAP/EMU Early Science observation as well as in X-rays with eROSITA. The projected separation of the X-ray peaks of the two clusters is ~50′ or ~3.1 Mpc. Here we present an inventory of interesting radio sources in this field around this cluster merger. While the eROSITA observations provide clear indications of a bridge of thermal gas between the clusters, neither ASKAP nor MWA observations show any diffuse radio emission coinciding with the X-ray bridge. We derive an upper limit on the radio emissivity in the bridge region of 〈 J 〉 1 GHz < 1.2 × 10 −44 W Hz −1 m −3 . A non-detection of diffuse radio emission in the X-ray bridge between these two clusters has implications for particle-acceleration mechanisms in cosmological large-scale structure. We also report extended or otherwise noteworthy radio sources in the 30 deg 2 field around Abell 3391-Abell 3395. We identified 20 Giant Radio Galaxies, plus 7 candidates, with linear projected sizes greater than 1 Mpc. The sky density of field radio galaxies with largest linear sizes of >0.7 Mpc is ≈1.7 deg −2 , three times higher than previously reported. We find no evidence for a cosmological evolution of the population of Giant Radio Galaxies. Moreover, we find seven candidates for cluster radio relics and radio halos.more » « less
-
null (Ed.)Radio relics are diffuse, extended synchrotron sources that originate from shock fronts generated during cluster mergers. The massive merging galaxy cluster MACS J0717.5+3745 hosts one of the more complex relics known to date. We present upgraded Giant Metrewave Radio Telescope band 3 (300−500 MHz) and band 4 (550−850 MHz) observations. These new observations, combined with published VLA and the new LOFAR HBA data, allow us to carry out a detailed, high spatial resolution spectral analysis of the relic over a broad range of frequencies. The integrated spectrum of the relic closely follows a power law between 144 MHz and 5.5 GHz with a mean spectral slope α = −1.16 ± 0.03. Despite the complex morphology of this relic, its subregions and the other isolated filaments also follow power-law behaviors, and show similar spectral slopes. Assuming diffusive shock acceleration, we estimated a dominant Mach number of ∼3.7 for the shocks that make up the relic. A comparison with recent numerical simulations suggests that in the case of radio relics, the slopes of the integrated radio spectra are determined by the Mach number of the accelerating shock, with α nearly constant, namely between −1.13 and −1.17, for Mach numbers 3.5 − 4.0. The spectral shapes inferred from spatially resolved regions show curvature, we speculate that the relic is inclined along the line of sight. The locus of points in the simulated color-color plots changes significantly with the relic viewing angle. We conclude that projection effects and inhomogeneities in the shock Mach number dominate the observed spectral properties of the relic in this complex system. Based on the new observations we raise the possibility that the relic and a narrow-angle-tailed radio galaxy are two different structures projected along the same line of sight.more » « less
-
Context. Radio relics are diffuse extended synchrotron sources that originate from shock fronts induced by galaxy cluster mergers. The particle acceleration mechanism at the shock fronts is still under debate. The galaxy cluster 1RXS J0603.3+4214 hosts one of the most intriguing examples of radio relics, known as the Toothbrush. Aims. In order to understand the mechanism(s) that accelerate(s) relativistic particles in the intracluster medium, we investigated the spectral properties of large-scale diffuse extended sources in the merging galaxy cluster 1RXS J0603.3+4214. Methods. We present new wideband radio continuum observations made with uGMRT and VLA. Our new observations, in combination with previously published data, allowed us to carry out a detailed high-spatial-resolution spectral and curvature analysis over a wide range of frequencies. Results. The integrated spectrum of the Toothbrush closely follows a power law over almost two orders of magnitude in frequency, with a spectral index of −1.16 ± 0.02. We do not find any evidence of spectral steepening below 8 GHz. The subregions of the Toothbrush also exhibit near-perfect power laws and identical spectral slopes, suggesting that the observed spectral index is rather set by the distribution of Mach numbers which may have a similar shape at different parts of the shock front. Indeed, numerical simulations show an intriguing similar spectral index, indicating that the radio spectrum is dominated by the average over the inhomogeneities within the shock, with most of the emission coming from the tail of the Mach number distribution. In contrast to the Toothbrush, the spectra of the fainter relics show a high-frequency steepening. Moreover, the integrated spectrum of the halo also follows a power law from 150 MHz to 3 GHz with a spectral index of −1.16 ± 0.04. We do not find any evidence for spectral curvature, not even in subareas of the halo. This suggest a homogeneous acceleration throughout the cluster volume. Between the “brush” region of the Toothbrush and the halo, the color-color analysis reveals emission that was consistent with an overlap between the two different spectral regions. Conclusions. None of the relic structures, that is, the Toothbrush as a whole or its subregions or the other two fainter relics, show spectral shapes consistent with a single injection of relativistic electrons, such as at a shock, followed by synchrotron aging in a relatively homogeneous environment. Inhomogeneities in some combination of Mach number, magnetic field strength, and projection effects dominate the observed spectral shapes.more » « less
-
Abstract Thin synchrotron-emitting filaments are increasingly seen in the intracluster medium (ICM). We present the first example of a direct interaction between a magnetic filament, a radio jet, and a dense ICM clump in the poor cluster A194. This enables the first exploration of the dynamics and possible histories of magnetic fields and cosmic rays in such filaments. Our observations are from the MeerKAT Galaxy Cluster Legacy Survey and the LOFAR Two-Meter Sky Survey. Prominent 220 kpc long filaments extend east of radio galaxy 3C40B, with very faint extensions to 300 kpc, and show signs of interaction with its northern jet. They curve around a bend in the jet and intersect the jet in Faraday depth space. The X-ray surface brightness drops across the filaments; this suggests that the relativistic particles and fields contribute significantly to the pressure balance and evacuate the thermal plasma in a ∼35 kpc cylinder. We explore whether the relativistic electrons could have streamed along the filaments from 3C40B, and present a plausible alternative whereby magnetized filaments are (a) generated by shear motions in the large-scale, post-merger ICM flow, (b) stretched by interactions with the jet and flows in the ICM, amplifying the embedded magnetic fields, and (c) perfused by re-energized relativistic electrons through betatron-type acceleration or diffusion of turbulently accelerated ICM cosmic-ray electrons. We use the Faraday depth measurements to reconstruct some of the 3D structures of the filameGnts and of 3C40A and B.