skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Constitutive relations for compressible granular flow in the inertial regime
Granular flows occur in a wide range of situations of practical interest to industry, in our natural environment and in our everyday lives. This paper focuses on granular flow in the so-called inertial regime, when the rheology is independent of the very large particle stiffness. Such flows have been modelled with the $$\unicode[STIX]{x1D707}(I),\unicode[STIX]{x1D6F7}(I)$$ -rheology, which postulates that the bulk friction coefficient $$\unicode[STIX]{x1D707}$$ (i.e. the ratio of the shear stress to the pressure) and the solids volume fraction $$\unicode[STIX]{x1D719}$$ are functions of the inertial number $$I$$ only. Although the $$\unicode[STIX]{x1D707}(I),\unicode[STIX]{x1D6F7}(I)$$ -rheology has been validated in steady state against both experiments and discrete particle simulations in several different geometries, it has recently been shown that this theory is mathematically ill-posed in time-dependent problems. As a direct result, computations using this rheology may blow up exponentially, with a growth rate that tends to infinity as the discretization length tends to zero, as explicitly demonstrated in this paper for the first time. Such catastrophic instability due to ill-posedness is a common issue when developing new mathematical models and implies that either some important physics is missing or the model has not been properly formulated. In this paper an alternative to the $$\unicode[STIX]{x1D707}(I),\unicode[STIX]{x1D6F7}(I)$$ -rheology that does not suffer from such defects is proposed. In the framework of compressible $$I$$ -dependent rheology (CIDR), new constitutive laws for the inertial regime are introduced; these match the well-established $$\unicode[STIX]{x1D707}(I)$$ and $$\unicode[STIX]{x1D6F7}(I)$$ relations in the steady-state limit and at the same time are well-posed for all deformations and all packing densities. Time-dependent numerical solutions of the resultant equations are performed to demonstrate that the new inertial CIDR model leads to numerical convergence towards physically realistic solutions that are supported by discrete element method simulations.  more » « less
Award ID(s):
1812445
PAR ID:
10149497
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
874
ISSN:
0022-1120
Page Range / eLocation ID:
926 to 951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Let $$f:X\rightarrow X$$ be a continuous dynamical system on a compact metric space $$X$$ and let $$\unicode[STIX]{x1D6F7}:X\rightarrow \mathbb{R}^{m}$$ be an $$m$$ -dimensional continuous potential. The (generalized) rotation set $$\text{Rot}(\unicode[STIX]{x1D6F7})$$ is defined as the set of all $$\unicode[STIX]{x1D707}$$ -integrals of $$\unicode[STIX]{x1D6F7}$$ , where $$\unicode[STIX]{x1D707}$$ runs over all invariant probability measures. Analogous to the classical topological entropy, one can associate the localized entropy $$\unicode[STIX]{x210B}(w)$$ to each $$w\in \text{Rot}(\unicode[STIX]{x1D6F7})$$ . In this paper, we study the computability of rotation sets and localized entropy functions by deriving conditions that imply their computability. Then we apply our results to study the case where $$f$$ is a subshift of finite type. We prove that $$\text{Rot}(\unicode[STIX]{x1D6F7})$$ is computable and that $$\unicode[STIX]{x210B}(w)$$ is computable in the interior of the rotation set. Finally, we construct an explicit example that shows that, in general, $$\unicode[STIX]{x210B}$$ is not continuous on the boundary of the rotation set when considered as a function of $$\unicode[STIX]{x1D6F7}$$ and $$w$$ . In particular, $$\unicode[STIX]{x210B}$$ is, in general, not computable at the boundary of $$\text{Rot}(\unicode[STIX]{x1D6F7})$$ . 
    more » « less
  2. We present a numerical study of non-colloidal spherical and rigid particles suspended in Newtonian, shear thinning and shear thickening fluids employing an immersed boundary method. We consider a linear Couette configuration to explore a wide range of solid volume fractions ( $$0.1\leqslant \unicode[STIX]{x1D6F7}\leqslant 0.4$$ ) and particle Reynolds numbers ( $$0.1\leqslant Re_{p}\leqslant 10$$ ). We report the distribution of solid and fluid phase velocity and solid volume fraction and show that close to the boundaries inertial effects result in a significant slip velocity between the solid and fluid phase. The local solid volume fraction profiles indicate particle layering close to the walls, which increases with the nominal $$\unicode[STIX]{x1D6F7}$$ . This feature is associated with the confinement effects. We calculate the probability density function of local strain rates and compare the latter’s mean value with the values estimated from the homogenisation theory of Chateau et al. ( J. Rheol. , vol. 52, 2008, pp. 489–506), indicating a reasonable agreement in the Stokesian regime. Both the mean value and standard deviation of the local strain rates increase primarily with the solid volume fraction and secondarily with the $$Re_{p}$$ . The wide spectrum of the local shear rate and its dependency on $$\unicode[STIX]{x1D6F7}$$ and $$Re_{p}$$ point to the deficiencies of the mean value of the local shear rates in estimating the rheology of these non-colloidal complex suspensions. Finally, we show that in the presence of inertia, the effective viscosity of these non-colloidal suspensions deviates from that of Stokesian suspensions. We discuss how inertia affects the microstructure and provide a scaling argument to give a closure for the suspension shear stress for both Newtonian and power-law suspending fluids. The stress closure is valid for moderate particle Reynolds numbers, $$O(Re_{p})\sim 10$$ . 
    more » « less
  3. The frog model is a branching random walk on a graph in which particles branch only at unvisited sites. Consider an initial particle density of $$\unicode[STIX]{x1D707}$$ on the full $$d$$ -ary tree of height $$n$$ . If $$\unicode[STIX]{x1D707}=\unicode[STIX]{x1D6FA}(d^{2})$$ , all of the vertices are visited in time $$\unicode[STIX]{x1D6E9}(n\log n)$$ with high probability. Conversely, if $$\unicode[STIX]{x1D707}=O(d)$$ the cover time is $$\exp (\unicode[STIX]{x1D6E9}(\sqrt{n}))$$ with high probability. 
    more » « less
  4. null (Ed.)
    Abstract Let $$K$$ be an algebraically closed field of prime characteristic $$p$$ , let $$X$$ be a semiabelian variety defined over a finite subfield of $$K$$ , let $$\unicode[STIX]{x1D6F7}:X\longrightarrow X$$ be a regular self-map defined over $$K$$ , let $$V\subset X$$ be a subvariety defined over $$K$$ , and let $$\unicode[STIX]{x1D6FC}\in X(K)$$ . The dynamical Mordell–Lang conjecture in characteristic $$p$$ predicts that the set $$S=\{n\in \mathbb{N}:\unicode[STIX]{x1D6F7}^{n}(\unicode[STIX]{x1D6FC})\in V\}$$ is a union of finitely many arithmetic progressions, along with finitely many $$p$$ -sets, which are sets of the form $$\{\sum _{i=1}^{m}c_{i}p^{k_{i}n_{i}}:n_{i}\in \mathbb{N}\}$$ for some $$m\in \mathbb{N}$$ , some rational numbers $$c_{i}$$ and some non-negative integers $$k_{i}$$ . We prove that this conjecture is equivalent with some difficult diophantine problem in characteristic 0. In the case $$X$$ is an algebraic torus, we can prove the conjecture in two cases: either when $$\dim (V)\leqslant 2$$ , or when no iterate of $$\unicode[STIX]{x1D6F7}$$ is a group endomorphism which induces the action of a power of the Frobenius on a positive dimensional algebraic subgroup of $$X$$ . We end by proving that Vojta’s conjecture implies the dynamical Mordell–Lang conjecture for tori with no restriction. 
    more » « less
  5. We examine correlations of the Möbius function over $$\mathbb{F}_{q}[t]$$ with linear or quadratic phases, that is, averages of the form 1 $$\begin{eqnarray}\frac{1}{q^{n}}\mathop{\sum }_{\deg f0$$ if $$Q$$ is linear and $$O(q^{-n^{c}})$$ for some absolute constant $c>0$ if $$Q$$ is quadratic. The latter bound may be reduced to $$O(q^{-c^{\prime }n})$$ for some $$c^{\prime }>0$$ when $Q(f)$ is a linear form in the coefficients of $$f^{2}$$ , that is, a Hankel quadratic form, whereas, for general quadratic forms, it relies on a bilinear version of the additive-combinatorial Bogolyubov theorem. 
    more » « less