Abstract Abundant transition metal borides are emerging as substitute electrochemical hydrogen evolution reaction (HER) catalysts for noble metals. Herein, an unusual canonic‐like behavior of theclattice parameter in the AlB2‐type solid solution Cr1–xMoxB2(x= 0, 0.25, 0.4, 0.5, 0.6, 0.75, 1) and its direct correlation to the HER activity in 0.5 M H2SO4solution are reported. The activity increases with increasingx, reaching its maximum atx= 0.6 before decreasing again. At high current densities, Cr0.4Mo0.6B2outperforms Pt/C, as it needs 180 mV less overpotential to drive an 800 mA cm−2current density. Cr0.4Mo0.6B2has excellent long‐term stability and durability showing no significant activity loss after 5000 cycles and 25 h of operation in acid. First‐principles calculations have correctly reproduced the nonlinear dependence of theclattice parameter and have shown that the mixed metal/B layers, such as (110), promote hydrogen evolution more efficiently forx= 0.6, supporting the experimental results.
more »
« less
Unexpected Correlation Between Boron Chain Condensation and Hydrogen Evolution Reaction (HER) Activity in Highly Active Vanadium Borides: Enabling Predictions
Abstract Transition‐metal borides (TMBs) have recently attracted attention as excellent hydrogen evolution (HER) electrocatalysts in bulk crystalline materials. Herein, we show for the first time that VB and V3B4have high electrocatalytic HER activity. Furthermore, we show that the HER activity (in 0.5 mH2SO4) increases with increasing boron chain condensation in vanadium borides: Using a −23 mV overpotential decrement derived from −0.296 mV (for VB at −10 mA cm−2current density) and −0.273 mV (for V3B4) we accurately predict the overpotential of VB2(−0.204 mV) as well as that of unstudied V2B3(−0.250 mV) and hypothetical “V5B8” (−0.227 mV). We then derived an exponential equation that predicts the overpotentials of known and hypothetical VxByphases containing at least a boron chain. These results provide a direct correlation between crystal structure and HER activity, thus paving the way for the design of even better electrocatalytic materials through structure–activity relationships.
more »
« less
- Award ID(s):
- 1654780
- PAR ID:
- 10149507
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 59
- Issue:
- 29
- ISSN:
- 1433-7851
- Page Range / eLocation ID:
- p. 11774-11778
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract 2D early transition metal carbide and nitride MXenes have intriguing properties for electrochemical energy storage and electrocatalysis. These properties can be manipulated by modifying the basal plane chemistry. Here, mixed transition metal nitride MXenes, M‐Ti4N3Tx(M = V, Cr, Mo, or Mn; Tx= O and/or OH), are developed by modifying pristine exfoliated Ti4N3TxMXene with V, Cr, Mo, and Mn salts using a simple solution‐based method. The resulting mixed transition metal nitride MXenes contain 6–51% metal loading (cf. Ti) that exhibit rich electrochemistry including highly tunable hydrogen evolution reaction (HER) electrocatalytic activity in a 0.5mH2SO4electrolyte as follows: V‐Ti4N3Tx> Cr‐Ti4N3Tx> Mo‐Ti4N3Tx> Mn‐Ti4N3Tx> pristine Ti4N3Txwith overpotentials as low as 330 mV at −10 mA cm−2with a charge‐transfer resistance of 70 Ω. Scanning electrochemical microscopy (SECM) reveals the electrochemical activity of individual MXene flakes. The SECM data corroborate the bulk HER activity trend for M‐Ti4N3Txas well as provide the first experimental evidence that HER results from catalysis on the MXene basal plane. These electrocatalytic results demonstrate a new pathway to tune the electrochemical properties of MXenes for water splitting and related electrochemical applications.more » « less
-
Abstract Development of high‐performance, low‐cost catalysts for electrochemical water splitting is key to sustainable hydrogen production. Herein, ultrafast synthesis of carbon‐supported ruthenium–copper (RuCu/C) nanocomposites is reported by magnetic induction heating, where the rapid Joule's heating of RuCl3and CuCl2at 200 A for 10 s produces Ru–Cl residues‐decorated Ru nanocrystals dispersed on a CuClxscaffold, featuring effective Ru to Cu charge transfer. Among the series, the RuCu/C‐3 sample exhibits the best activity in 1 mKOH toward both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), with an overpotential of only −23 and +270 mV to reach 10 mA cm−2, respectively. When RuCu/C‐3 is used as bifunctional catalysts for electrochemical water splitting, a low cell voltage of 1.53 V is needed to produce 10 mA cm−2, markedly better than that with a mixture of commercial Pt/C+RuO2(1.59 V). In situ X‐ray absorption spectroscopy measurements show that the bifunctional activity is due to reduction of the Ru–Cl residues at low electrode potentials that enriches metallic Ru and oxidation at high electrode potentials that facilitates the formation of amorphous RuOx. These findings highlight the unique potential of MIH in the ultrafast synthesis of high‐performance catalysts for electrochemical water splitting.more » « less
-
Abstract Development of high‐performance electrocatalysts for water splitting is crucial for a sustainable hydrogen economy. In this study, rapid heating of ruthenium(III) acetylacetonate by magnetic induction heating (MIH) leads to the one‐step production of Ru‐RuO₂/C nanocomposites composed of closely integrated Ru and RuO₂ nanoparticles. The formation of Mott‐Schottky heterojunctions significantly enhances charge transfer across the Ru‐RuO2interface leading to remarkable electrocatalytic activities toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in 1 mKOH. Among the series, the sample prepares at 300 A for 10 s exhibits the best performance, with an overpotential of only −31 mV for HER and +240 mV for OER to reach the current density of 10 mA cm⁻2. Additionally, the catalyst demonstrates excellent durability, with minimal impacts of electrolyte salinity. With the sample as the bifunctional catalysts for overall water splitting, an ultralow cell voltage of 1.43 V is needed to reach 10 mA cm⁻2, 160 mV lower than that with a commercial 20% Pt/C and RuO₂/C mixture. These results highlight the significant potential of MIH in the ultrafast synthesis of high‐performance catalysts for electrochemical water splitting and sustainable hydrogen production from seawater.more » « less
-
Abstract M5X4MXenes, a subclass of 2D transition metal carbides, have attracted attention as the thickest 2D material synthesized. Early studies show their promising electrocatalytic activity but overlooked how metal composition and interlayer spacing affect hydrogen evolution reaction (HER). To address this gap, three M5X4MXenes, Mo4VC4, (TiTa)5C4, and (TiNb)5C4, are systematically studied and their interlayer spacing and composition modulated through ion exchange with tetramethyl ammonium (TMA+vs. Li+), providing new insights into their HER activity. These findings reveal that TMA+‐intercalated Mo4VC4exhibits superior HER activity, achieving areal and gravimetric overpotentials of 172 and 90 mV, respectively, due to its composition (presence of Mo) and expanded interlayer spacing that enhances proton accessibility. The Li+exchange increases the overpotential to 212 and 131 mV at 10 mA areal and gravimetric current density, respectively, as reduced interlayer spacing restricts access to active Mo sites. In contrast, (TiNb)5C4and (TiTa)5C4display higher overpotentials, making them more suitable for supercapacitor or aqueous battery applications due to the wider electrochemical window. This study provides critical insights into the interplay between metal composition and interlayer engineering in M5X4MXenes, establishing TMA‐Mo4VC4as a promising candidate for sustainable hydrogen production.more » « less
An official website of the United States government
