skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coercive Fields Above 6 T in Two Cobalt(II)–Radical Chain Compounds
Abstract Lanthanide permanent magnets are widely used in applications ranging from nanotechnology to industrial engineering. However, limited access to the rare earths and rising costs associated with their extraction are spurring interest in the development of lanthanide‐free hard magnets. Zero‐ and one‐dimensional magnetic materials are intriguing alternatives due to their low densities, structural and chemical versatility, and the typically mild, bottom‐up nature of their synthesis. Here, we present two one‐dimensional cobalt(II) systems Co(hfac)2(R‐NapNIT) (R‐NapNIT=2‐(2′‐(R‐)naphthyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide, R=MeO or EtO) supported by air‐stable nitronyl nitroxide radicals. These compounds are single‐chain magnets and exhibit wide, square magnetic hysteresis below 14 K, with giant coercive fields up to 65 or 102 kOe measured using static or pulsed high magnetic fields, respectively. Magnetic, spectroscopic, and computational studies suggest that the record coercivities derive not from three‐dimensional ordering but from the interaction of adjacent chains that compose alternating magnetic sublattices generated by crystallographic symmetry.  more » « less
Award ID(s):
1800252
PAR ID:
10149509
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
59
Issue:
26
ISSN:
1433-7851
Page Range / eLocation ID:
p. 10610-10618
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Two‐dimentional magnets are of significant interest both as a platform for exploring novel fundamental physics and for their potential in spintronic and optoelectronic devices. Recent bulk magnetometry studies have indicated a weak ferromagnetic response in tungsten disulfide (WS2), and theoretical predictions suggest edge‐localized magnetization in flakes with partial hydrogenation. Here, room‐temperature wide‐field quantum diamond magnetometry to image pristine and Fe‐implanted WS2flakes of varying thicknesses (45–160 nm), exfoliated from bulk crystals and transferred to NV‐doped diamond substrates, is used. Direct evidence of edge‐localized stray magnetic fields, which scale linearly with applied external magnetic field (4.4–220 mT), reaching up to ±4.7 µT, is observed. The edge signal shows a limited dependence on the flake thickness, consistent with dipolar field decay and sensing geometry. Magnetic simulations using five alternative models favor the presence of edge magnetization aligned along an axis slightly tilted from the normal to the WS2flake's plane, consistent with spin canting in antiferromagnetically coupled edge states. Thses findings establish WS2as a promising platform for edge‐controlled 2D spintronics. 
    more » « less
  2. Abstract Coherent control and manipulation of quantum degrees of freedom such as spins forms the basis of emerging quantum technologies. In this context, the robust valley degree of freedom and the associated valley pseudospin found in two‐dimensional transition metal dichalcogenides is a highly attractive platform. Valley polarization and coherent superposition of valley states have been observed in these systems even up to room temperature. Control of valley coherence is an important building block for the implementation of valley qubit. Large magnetic fields or high‐power lasers have been used in the past to demonstrate the control (initialization and rotation) of the valley coherent states. Here, the control of layer–valley coherence via strong coupling of valley excitons in bilayer WS2to microcavity photons is demonstrated by exploiting the pseudomagnetic field arising in optical cavities owing to the transverse electric–transverse magnetic (TE–TM)mode splitting. The use of photonic structures to generate pseudomagnetic fields which can be used to manipulate exciton‐polaritons presents an attractive approach to control optical responses without the need for large magnets or high‐intensity optical pump powers. 
    more » « less
  3. Abstract 2D van der Waals (vdW) magnets with layer‐dependent magnetic states and/or diverse magnetic interactions and anisotropies have attracted extensive research interest. Despite the advances, a notable challenge persists in effectively manipulating the tunneling anisotropic magnetoresistance (TAMR) of 2D vdW magnet‐based magnetic tunnel junctions (MTJs). Here, this study reports the novel and anomalous tunneling magnetoresistance (TMR) oscillations and pioneering demonstration of bias and gate voltage controllable TAMR in 2D vdW MTJs, utilizing few‐layer CrPS4. This material, inherently an antiferromagnet, transitions to a canted magnetic order upon application of external magnetic fields. Through TMR measurements, this work unveils the novel layer‐dependent oscillations in the tunneling resistance for few‐layer CrPS4devices under both out‐of‐plane and in‐plane magnetic fields, with a pronounced controllability via gate voltage. Intriguingly, this study demonstrates that both the polarity and magnitude of TAMR in CrPS4can be effectively tuned through either a bias or gate voltage. The mechanism behind this electrically tunable TAMR is further elucidated through first‐principles calculations. The implications of the findings are far‐reaching, providing new insights into 2D magnetism and opening avenues for the development of innovative spintronic devices based on 2D vdW magnets. 
    more » « less
  4. Abstract Ferro‐rotational (FR) materials, renowned for their distinctive material functionalities, present challenges in the growth of homo‐FR crystals (i.e., single FR domain). This study explores a cost‐effective approach to growing homo‐FR helimagnetic RbFe(SO4)2(RFSO) crystals by lowering the crystal growth temperature below theTFRthreshold using the high‐pressure hydrothermal method. Through polarized neutron diffraction experiments, it is observed that nearly 86% of RFSO crystals consist of a homo‐FR domain. Notably, RFSO displays remarkable stability in the FR phase, with an exceptionally highTFRof ≈573 K. Furthermore, RFSO exhibits a chiral helical magnetic structure with switchable ferroelectric polarization below 4 K. Importantly, external electric fields can induce a single magnetic domain state and manipulate its magnetic chirality. The findings suggest that the search for new FR magnets with outstanding material properties should consider magnetic sulfates as promising candidates. 
    more » « less
  5. Abstract Among several well-known transition metal-based compounds, cleavable van der Waals (vdW) Fe3-xGeTe2(FGT) magnet is a strong candidate for use in two-dimensional (2D) magnetic devices due to its strong perpendicular magnetic anisotropy, sizeable Curie temperature (TC~154 K), and versatile magnetic character that is retained in the low-dimensional limit. While the TCremains far too low for practical applications, there has been a successful push toward improving it via external driving forces such as pressure, irradiation, and doping. Here we present experimental evidence of a room temperature (RT) ferromagnetic phase induced by the electrochemical intercalation of common tetrabutylammonium cations (TBA+) into quasi-2D FGT. We obtained Curie temperatures as high as 350 K with chemical and physical stability of the intercalated compound. The temperature-dependent Raman measurements, in combination with vdW-corrected ab initio calculations, suggest that charge transfer (electron doping) upon intercalation could lead to the observation of RT ferromagnetism. This work demonstrates that molecular intercalation is a viable route in realizing high-temperature vdW magnets in an inexpensive and reliable manner, and has the potential to be extended to bilayer and few-layer vdW magnets. 
    more » « less