skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optical Manipulation of Layer–Valley Coherence via Strong Exciton–Photon Coupling in Microcavities
Abstract Coherent control and manipulation of quantum degrees of freedom such as spins forms the basis of emerging quantum technologies. In this context, the robust valley degree of freedom and the associated valley pseudospin found in two‐dimensional transition metal dichalcogenides is a highly attractive platform. Valley polarization and coherent superposition of valley states have been observed in these systems even up to room temperature. Control of valley coherence is an important building block for the implementation of valley qubit. Large magnetic fields or high‐power lasers have been used in the past to demonstrate the control (initialization and rotation) of the valley coherent states. Here, the control of layer–valley coherence via strong coupling of valley excitons in bilayer WS2to microcavity photons is demonstrated by exploiting the pseudomagnetic field arising in optical cavities owing to the transverse electric–transverse magnetic (TE–TM)mode splitting. The use of photonic structures to generate pseudomagnetic fields which can be used to manipulate exciton‐polaritons presents an attractive approach to control optical responses without the need for large magnets or high‐intensity optical pump powers.  more » « less
Award ID(s):
2112550 1936276
PAR ID:
10419265
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Optical Materials
Volume:
11
Issue:
13
ISSN:
2195-1071
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The condensation of half-light half-matter exciton polaritons in semiconductor optical cavities is a striking example of macroscopic quantum coherence in a solid-state platform. Quantum coherence is possible only when there are strong interactions between the exciton polaritons provided by their excitonic constituents. Rydberg excitons with high principal value exhibit strong dipole–dipole interactions in cold atoms. However, polaritons with the excitonic constituent that is an excited state, namely Rydberg exciton polaritons (REPs), have not yet been experimentally observed. Here, we observe the formation of REPs in a single crystal CsPbBr 3 perovskite cavity without any external fields. These polaritons exhibit strong nonlinear behavior that leads to a coherent polariton condensate with a prominent blue shift. Furthermore, the REPs in CsPbBr 3 are highly anisotropic and have a large extinction ratio, arising from the perovskite’s orthorhombic crystal structure. Our observation not only sheds light on the importance of many-body physics in coherent polariton systems involving higher-order excited states, but also paves the way for exploring these coherent interactions for solid-state quantum optical information processing. 
    more » « less
  2. Interfacing solid-state defect electron spins to other quantum systems is an ongoing challenge. The ground-state spin’s weak coupling to its environment not only bestows excellent coherence properties but also limits desired drive fields. The excited-state orbitals of these electrons, however, can exhibit stronger coupling to phononic and electric fields. Here, we demonstrate electrically driven coherent quantum interference in the optical transition of single, basally oriented divacancies in commercially available 4H silicon carbide. By applying microwave frequency electric fields, we coherently drive the divacancy’s excited-state orbitals and induce Landau-Zener-Stückelberg interference fringes in the resonant optical absorption spectrum. In addition, we find remarkably coherent optical and spin subsystems enabled by the basal divacancy’s symmetry. These properties establish divacancies as strong candidates for quantum communication and hybrid system applications, where simultaneous control over optical and spin degrees of freedom is paramount. 
    more » « less
  3. Abstract Ultracold polar molecules combine a rich structure of long-lived internal states with access to controllable long-range anisotropic dipole–dipole interactions. In particular, the rotational states of polar molecules confined in optical tweezers or optical lattices may be used to encode interacting qubits for quantum computation or pseudo-spins for simulating quantum magnetism. As with all quantum platforms, the engineering of robust coherent superpositions of states is vital. However, for optically trapped molecules, the coherence time between rotational states is typically limited by inhomogeneous differential light shifts. Here we demonstrate a rotationally magic optical trap for87Rb133Cs molecules that supports a Ramsey coherence time of 0.78(4) s in the absence of dipole–dipole interactions. This is estimated to extend to >1.4 s at the 95% confidence level using a single spin-echo pulse. In our trap, dipolar interactions become the dominant mechanism by which Ramsey contrast is lost for superpositions that generate oscillating dipoles. By changing the states forming the superposition, we tune the effective dipole moment and show that the coherence time is inversely proportional to the strength of the dipolar interaction. Our work unlocks the full potential of the rotational degree of freedom in molecules for quantum computation and quantum simulation. 
    more » « less
  4. The overall goal of photonics research is to understand and control light in new and richer ways to facilitate new and richer applications. Many major developments to this end have relied on nonlinear optical techniques, such as lasing, mode-locking, and parametric downconversion, to enable applications based on the interactions of coherent light with matter. These processes often involve nonlinear interactions between photonic and material degrees of freedom spanning multiple spatiotemporal scales. While great progress has been made with relatively simple optimizations, such as maximizing single-mode coherence or peak intensity alone, the ultimate achievement of coherent light engineering is complete, multidimensional control of light–light and light–matter interactions through tailored construction of complex optical fields and systems that exploit all of light’s degrees of freedom. This capability is now within sight, due to advances in telecommunications, computing, algorithms, and modeling. Control of highly multimode optical fields and processes also facilitates quantitative and qualitative advances in optical imaging, sensing, communication, and information processing since these applications directly depend on our ability to detect, encode, and manipulate information in as many optical degrees of freedom as possible. Today, these applications are increasingly being enhanced or enabled by both multimode engineering and nonlinearity. Here, we provide a brief overview of multimode nonlinear photonics, focusing primarily on spatiotemporal nonlinear wave propagation and, in particular, on promising future directions and routes to applications. We conclude with an overview of emerging processes and methodologies that will enable complex, coherent nonlinear photonic devices with many degrees of freedom. 
    more » « less
  5. Abstract Surface acoustic waves (SAW) and associated devices are ideal for sensing, metrology, and hybrid quantum devices. While the advances demonstrated to date are largely based on electromechanical coupling, a robust and customizable coherent optical coupling would unlock mature and powerful cavity optomechanical control techniques and an efficient optical pathway for long-distance quantum links. Here we demonstrate direct and robust coherent optical coupling to Gaussian surface acoustic wave cavities with small mode volumes and high quality factors (>105measured here) through a Brillouin-like optomechanical interaction. High-frequency SAW cavities designed with curved metallic acoustic reflectors deposited on crystalline substrates are efficiently optically accessed along piezo-active directions, as well as non-piezo-active (electromechanically inaccessible) directions. The precise optical technique uniquely enables controlled analysis of dissipation mechanisms as well as detailed transverse spatial mode spectroscopy. These advantages combined with simple fabrication, large power handling, and strong coupling to quantum systems make SAW optomechanical platforms particularly attractive for sensing, material science, and hybrid quantum systems. 
    more » « less