skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Arithmeticity of the monodromy of some Kodaira fibrations
A question of Griffiths–Schmid asks when the monodromy group of an algebraic family of complex varieties is arithmetic. We resolve this in the affirmative for a class of algebraic surfaces known as Atiyah–Kodaira manifolds, which have base and fibers equal to complete algebraic curves. Our methods are topological in nature and involve an analysis of the ‘geometric’ monodromy, valued in the mapping class group of the fiber.  more » « less
Award ID(s):
1703181
PAR ID:
10149924
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Compositio Mathematica
Volume:
156
Issue:
1
ISSN:
0010-437X
Page Range / eLocation ID:
114 to 157
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We construct, over any CM field, compatible systems of $$l$$ -adic Galois representations that appear in the cohomology of algebraic varieties and have (for all $$l$$ ) algebraic monodromy groups equal to the exceptional group of type $$E_{6}$$ . 
    more » « less
  2. We show that finitely generated and purely pseudo-Anosov subgroups of fundamental groups of fibered 3–manifolds with reducible monodromy are convex cocompact as subgroups of the mapping class group via the Birman exact sequence. Combined with results of Dowdall–Kent–Leininger and Kent–Leininger–Schleimer, this establishes the result for the image of all such fibered 3–manifold groups in the mapping class group. 
    more » « less
  3. We demonstrate the existence of a certain genus four origami whose Kontsevich--Zorich monodromy is arithmetic in the sense of Sarnak. The surface is interesting because its Veech group is as large as possible and given by SL(2,Z). When compared to other surfaces with Veech group SL(2,Z) such as the Eierlegendre Wollmichsau and the Ornithorynque, an arithmetic Kontsevich--Zorich monodromy is surprising and indicates that there is little relationship between the Veech group and monodromy group of origamis. Additionally, we record the index and congruence level in the ambient symplectic group which gives data on what can appear in genus 4. 
    more » « less
  4. Abstract A flat vector bundle on an algebraic variety supports two natural definable structures given by the flat and algebraic coordinates. In this note, we show these two structures are compatible, subject to a condition on the local monodromy at infinity that is satisfied for all flat bundles underlying variations of Hodge structures. 
    more » « less
  5. Abstract A Kodaira fibration is a non‐isotrivial fibration from a smooth algebraic surfaceSto a smooth algebraic curveBsuch that all fibers are smooth algebraic curves of genusg. Such fibrations arise as complete curves inside the moduli space of genusgalgebraic curves. We investigate here the possible connected monodromy groups of a Kodaira fibration in the case and classify which such groups can arise from a Kodaira fibration obtained as a general complete intersection curve inside a subvariety of parametrizing curves whose Jacobians have extra endomorphisms. 
    more » « less