Wetlands provide essential ecosystem services, including nutrient cycling, flood protection, and biodiversity support, that are sensitive to changes in wetland hydrology. Wetland hydrological inputs come from precipitation, groundwater discharge, and surface run-off. Changes to these inputs via climate variation, groundwater extraction, and land development may alter the timing and magnitude of wetland inundation. Here, we use a long-term (14-year) comparative study of 152 depressional wetlands in west-central Florida to identify sources of variation in wetland inundation during two key time periods, 2005–2009 and 2010–2018. These time periods are separated by the enactment of water conservation policies in 2009, which included regional reductions in groundwater extraction. We investigated the response of wetland inundation to the interactive effects of precipitation, groundwater extraction, surrounding land development, basin geomorphology, and wetland vegetation class. Results show that water levels were lower and hydroperiods were shorter in wetlands of all vegetation classes during the first (2005–2009) time period, which corresponded with low rainfall conditions and high rates of groundwater extraction. Under water conservation policies enacted in the second (2010–2018) time period, median wetland water depths increased 1.35 m and median hydroperiods increased from 46 % to 83 %. Water-level variation was additionally less sensitive to groundwater extraction. The increase in inundation differed among vegetation classes with some wetlands not displaying signs of hydrological recovery. After accounting for effects of several explanatory factors, inundation still varied considerably among wetlands, suggesting a diversity of hydrological regimes, and thus ecological function, among individual wetlands across the landscape. Policies seeking to balance human water demand with the preservation of depressional wetlands would benefit by recognizing the heightened sensitivity of wetland inundation to groundwater extraction during periods of low precipitation.
more »
« less
Data for wetlandscapes and their changes around the world
Abstract. Geography and associated hydrological, hydroclimate and land-useconditions and their changes determine the states and dynamics of wetlandsand their ecosystem services. The influences of these controls are notlimited to just the local scale of each individual wetland but extend overlarger landscape areas that integrate multiple wetlands and their totalhydrological catchment – the wetlandscape. However, the data and knowledgeof conditions and changes over entire wetlandscapes are still scarce,limiting the capacity to accurately understand and manage critical wetlandecosystems and their services under global change. We present a newWetlandscape Change Information Database (WetCID), consisting of geographic,hydrological, hydroclimate and land-use information and data for 27wetlandscapes around the world. This combines survey-based local informationwith geographic shapefiles and gridded datasets of large-scale hydroclimateand land-use conditions and their changes over whole wetlandscapes.Temporally, WetCID contains 30-year time series of data for mean monthlyprecipitation and temperature and annual land-use conditions. Thesurvey-based site information includes local knowledge on the wetlands,hydrology, hydroclimate and land uses within each wetlandscape and on theavailability and accessibility of associated local data. This novel database(available through PANGAEA https://doi.org/10.1594/PANGAEA.907398; Ghajarniaet al., 2019) can support site assessments; cross-regional comparisons; andscenario analyses of the roles and impacts of land use, hydroclimatic andwetland conditions, and changes in whole-wetlandscape functions and ecosystemservices.
more »
« less
- PAR ID:
- 10149936
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Earth System Science Data
- Volume:
- 12
- Issue:
- 2
- ISSN:
- 1866-3516
- Page Range / eLocation ID:
- 1083 to 1100
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT MotivationFreshwater ecosystems have been heavily impacted by land‐use changes, but data syntheses on these impacts are still limited. Here, we compiled a global database encompassing 241 studies with species abundance data (from multiple biological groups and geographic locations) across sites with different land‐use categories. This compilation will be useful for addressing questions regarding land‐use change and its impact on freshwater biodiversity. Main Types of Variables ContainedThe database includes metadata of each study, sites location, sample methods, sample time, land‐use category and abundance of each taxon. Spatial Location and GrainThe database contains data from across the globe, with 85% of the sites having well‐defined geographical coordinates. Major Taxa and Level of MeasurementThe database covers all major freshwater biological groups including algae, macrophytes, zooplankton, macroinvertebrates, fish and amphibians.more » « less
-
Land use change and climate variability have significantly altered the regional water cycle over the last century thereby affecting water security at a local to regional scale. Therefore, it is important to investigate how the climate, land use change, and water demand potentially influence the water security by applying the concept of water footprint. An integrated hydrological modeling framework using SWAT (Soil and Water Assessment Tool) model was developed by considering both anthropogenic (e.g. land use change, water demand) and climatic factors to quantify the spatio-temporal variability of water security indicators such as blue water scarcity, green water scarcity, Falkenmark index, and freshwater provision indicators in Savannah River Basin (SRB). The SRB witnesses a significant change in land use land cover (e.g. forest cover, urban area) as well as water demand (e.g. irrigation, livestock production). Overall our results reveal that, SRB witnessed a significant decrease in blue water due to the climate variability indicating that the precipitation has more control over the blue water resources. Whereas, green water was more sensitive to changes in land use pattern. In addition, the magnitude of various water security indicators are different within each county suggesting that water scarcity are controlled by various factors within a region. An integrated assessment of water footprint, environmental flow, anthropogenic factors, and climatic variables can provide useful information on the rising (how and where) of water related risk to human and ecological health.more » « less
-
1) Urbanization may lead to changes in local richness (alpha diversity) or in community composition (beta diversity), although the direction of change can be challenging to predict. For instance, introduced species may offset the loss of native specialist taxa, leading to no change in alpha diversity in urban areas, but decreased beta diversity (i.e., more homogenous community structure). Alternatively, because urban areas can have low connectivity and high environmental heterogeneity between sites, they may support distinct communities from one another over small geographic distances. 2) Wetlands and ponds provide critical ecosystem services and support diverse communities, making them important systems in which to understand consequences of urbanization. To determine how urban development shapes pond community structure, we surveyed 68 ponds around Madison, Wisconsin, USA, which were classified as urban, greenspace, or rural based on surrounding land use. We evaluated the influence of local abiotic factors, presence of nonnative fishes, and landscape characteristics on alpha diversity of aquatic plants, macroinvertebrates, and vertebrates. We also analyzed whether surrounding land cover was associated with changes in community composition and/or the presence of specific taxa. 3) We found a 23% decrease in mean richness (alpha diversity) from rural to urban pond sites, and a 15% decrease in richness from rural to urban greenspace pond sites. Among landscape factors, observed pond richness was negatively correlated with adjacent developed land and mowed lawns, as well as greater distances to other waterbodies. Among pond level factors, habitat complexity was associated with increased richness, while the presence of invasive fish was associated with decreased richness. 4) Beta diversity was relatively high for all ponds due to turnover in composition between sites. Urban ponds supported more introduced species, lacked a subset of native species found in rural ponds, and had slightly higher beta diversity than greenspace and rural ponds. 5) Synthesis and Applications: Integrating ponds into connected greenspaces comprised of native vegetation (rather than mowed grass), preventing nonnative fish introductions, and promoting habitat complexity may mitigate negative effects of urbanization on aquatic richness. The high beta diversity of distinct pond communities emphasizes their importance to biodiversity support in urban environments, despite being small in size and rarely incorporated into urban conservation planning.more » « less
-
1) Urbanization may lead to changes in local richness (alpha diversity) or in community composition (beta diversity), although the direction of change can be challenging to predict. For instance, introduced species may offset the loss of native specialist taxa, leading to no change in alpha diversity in urban areas, but decreased beta diversity (i.e., more homogenous community structure). Alternatively, because urban areas can have low connectivity and high environmental heterogeneity between sites, they may support distinct communities from one another over small geographic distances. 2) Wetlands and ponds provide critical ecosystem services and support diverse communities, making them important systems in which to understand consequences of urbanization. To determine how urban development shapes pond community structure, we surveyed 68 ponds around Madison, Wisconsin, USA, which were classified as urban, greenspace, or rural based on surrounding land use. We evaluated the influence of local abiotic factors, presence of nonnative fishes, and landscape characteristics on alpha diversity of aquatic plants, macroinvertebrates, and vertebrates. We also analyzed whether surrounding land cover was associated with changes in community composition and/or the presence of specific taxa. 3) We found a 23% decrease in mean richness (alpha diversity) from rural to urban pond sites, and a 15% decrease in richness from rural to urban greenspace pond sites. Among landscape factors, observed pond richness was negatively correlated with adjacent developed land and mowed lawns, as well as greater distances to other waterbodies. Among pond level factors, habitat complexity was associated with increased richness, while the presence of invasive fish was associated with decreased richness. 4) Beta diversity was relatively high for all ponds due to turnover in composition between sites. Urban ponds supported more introduced species, lacked a subset of native species found in rural ponds, and had slightly higher beta diversity than greenspace and rural ponds. 5) Synthesis and Applications: Integrating ponds into connected greenspaces comprised of native vegetation (rather than mowed grass), preventing nonnative fish introductions, and promoting habitat complexity may mitigate negative effects of urbanization on aquatic richness. The high beta diversity of distinct pond communities emphasizes their importance to biodiversity support in urban environments, despite being small in size and rarely incorporated into urban conservation planning.more » « less
An official website of the United States government

