Organic chromophores initiate much of daytime aqueous phase chemistry in the environment. Thus, studying the absorption spectra of commonly used organic photosensitizers is paramount to fully understand their relevance in environmental processes. In this work, we combined UV-Vis spectroscopy, 1 H-NMR spectroscopy, quantum chemical calculations, and molecular dynamics simulations to investigate the absorption spectra of 4-benzoyl benzoic acid (4BBA), a widely used photosensitizer and a common proxy of environmentally relevant chromophores. Solutions of 4BBA at different pH values show that protonated and deprotonated species have an effect on its absorbance spectra. Theoretical calculations of these species in water clusters provide physical and chemical insights into the spectra. Quantum chemical calculations were conducted to analyze the UV-Vis absorbance spectra of 4BBA species using various cluster sizes, such as C 6 H 5 COC 6 H 4 COOH·(H 2 O) n , where n = 8 for relatively small clusters and n = 30 for larger clusters. While relatively small clusters have been successfully used for smaller chromophores, our results indicate that simulations of protonated species of 4BBA require relatively larger clusters of n = 30. A comparison between the experimental and theoretical results shows good agreement in the pH-dependent spectral shift between the hydrated cluster model and the experimental data. Overall, the theoretical and empirical results indicate that the experimental optical spectra of aqueous phase 4BBA can be represented by the acid–base equilibrium of the keto-forms, with a spectroscopically measured p K a of 3.41 ± 0.04. The results summarized here contribute to a molecular-level understanding of solvated organic molecules through calculations restricted to cluster models, and thereby, broader insight into environmentally relevant chromophores.
more »
« less
Absorption spectra of benzoic acid in water at different pH and in the presence of salts: insights from the integration of experimental data and theoretical cluster models
The absorption spectra of molecular organic chromophores in aqueous media are of considerable importance in environmental chemistry. In this work, the UV-vis spectra of benzoic acid (BA), the simplest aromatic carboxylic acid, in aqueous solutions at varying pH and in the presence of salts are measured experimentally. The solutions of different pH provide insights into the contributions from both the non-dissociated acid molecule and the deprotonated anionic species. The microscopic interpretation of these spectra is then provided by quantum chemical calculations for small cluster models of benzoic species (benzoic acid and benzoate anion) with water molecules. Calculations of the UV-vis absorbance spectra are then carried out for different clusters such as C 6 H 5 COOH·(H 2 O) n and C 6 H 5 COO − ·(H 2 O) n , where n = 0–8. The following main conclusions from these calculations and the comparison to experimental results can be made: (i) the small water cluster yields good quantitative agreement with observed solution experiments; (ii) the main peak position is found to be very similar at different levels of theory and is in excellent agreement with the experimental value, however, a weaker feature about 1 eV to lower energy (red shift) of the main peak is correctly reproduced only by using high level of theory, such as Algebraic Diagrammatic Construction (ADC); (iii) dissociation of the BA into ions is found to occur with a minimum of water molecules of n = 8; (iv) the deprotonation of BA has an influence on the computed spectrum and the energetics of the lowest energy electronic transitions; (v) the effect of the water on the spectra is much larger for the deprotonated species than for the non-dissociated acid. It was found that to reproduce experimental spectrum at pH 8.0, additional continuum representation for the extended solvent environment must be included in combination with explicit solvent molecules ( n ≥ 3); (vi) salts (NaCl and CaCl 2 ) have minimal effect on the absorption spectrum and; (vii) experimental results showed that B-band of neutral BA is not sensitive to the solvent effects whereas the effect of the water on the C-band is significant. The water effects blue-shift this band up to ∼0.2 eV. Overall, the results demonstrate the ability to further our understanding of the microscopic interpretation of the electronic structure and absorption spectra of BA in aqueous media through calculations restricted to small cluster models.
more »
« less
- Award ID(s):
- 1801971
- NSF-PAR ID:
- 10150050
- Date Published:
- Journal Name:
- Physical Chemistry Chemical Physics
- Volume:
- 22
- Issue:
- 9
- ISSN:
- 1463-9076
- Page Range / eLocation ID:
- 5046 to 5056
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Previous studies have suggested that the photochemistry of nitroaromatics in organic solvents can vary significantly from the photochemistry in aqueous solutions. This work compares the photodegradation of 2-nitrophenol (2NP), 4-nitrophenol (4NP), 2,4-dinitrophenol (24DNP), and 2,4,6-trinitrophenol (246TNP) in 2-propanol and water to better understand the photochemical loss of nitrophenols in atmospheric organic particles and aqueous droplets. Polychromatic quantum yields were determined by monitoring the loss of absorbance of each nitrophenol with UV/vis spectroscopy in the presence of an acid (undissociated nitrophenol) or base (nitrophenolate). There was no orderly variation between loss rates in the organic and aqueous phases: 2NP and 4NP had similar yields in the two solvents. 246TNP was an outlier in these results as it dissociated in both acidified 2-propanol and water due to its exceptionally strong acidity. A notable result is that only for 24DNP was a dramatically increased reactivity found in 2-propanol compared to that in water. Time-dependent density functional theory calculations were carried out to characterize the excited state energies and absorption spectra with a conductor-like polarizable continuum model or explicit solvation by a few solvent molecules. Explicit solvent calculations suggest the enhanced reactivity of 24DNP in 2-propanol is due to the strong interaction between a 2-propanol molecule and an –NO 2 group in the excited state. For the other nitrophenols, the solvent effects on electronic structure were minimal. Overall, the observations in this work suggest that solvent effects on the electronic structure and condensed-phase photochemistry of nitrophenols are minimal, with the exception of 24DNP.more » « less
-
Ultraviolet absorption spectra of acrylic acid and its conjugate base, acrylate, in aqueous solutionAcrylic acid is an important compound widely used in industry with multiple commercial applications, and it is also a key intermediate in the marine organosulfur cycle. However, the fundamental ultraviolet (UV) absorption spectrum of acrylic acid or its conjugate base, acrylate (pKa = 4.25 at 20 oC) have not been determined in water. In this paper, we determined the absorption spectrum of acrylate in aqueous solution at pH 7.2 and 20 oC between 207 and 400 nm. The molar absorptivity decreased rapidly from 3958 M‒1 cm‒1 at 207 nm to a non-detectable value at wavelengths greater than 330 nm, with weak absorption at wavelengths greater than 290 nm (e.g., ɛ290nm 2.7 M‒1 cm‒1). No discernable absorption bands were observed in the absorption spectrum. Excellent agreement was observed when comparing absorption spectra obtained (1) with two different spectrophotometers and (2) with standards prepared from either newly purchased sodium acrylate or from the base hydrolysis of dimethylsulfoniopropionate. Wavelength-dependent molar absorptivities were constant at pH 7.2 over a range of acrylate concentrations from 25 to 135 μM. The absorption spectrum red shifted when the solution pH increased from 2.8 to 8.2, with an isosbestic point observed at 214 nm indicating two exchangeable species in solution. Our study provides the first detailed UV absorption spectra of acrylic acid and acrylate in aqueous solution, with important implications regarding the detection and study of these compounds in environmental settings and commercial applications.more » « less
-
null (Ed.)The partitioning of medium-chain fatty acid surfactants such as nonanoic acid (NA) between the bulk phase and the air/water interface is of interest to a number of fields including marine and atmospheric chemistry. However, questions remain about the behavior of these molecules, the contributions of various relevant chemical equilibria, and the impact of pH, salt and bulk surfactant concentrations. In this study, the surface adsorption of nonanoic acid and its conjugate base is quantitatively investigated at various pH values, surfactant concentrations and the presence of salts. Surface concentrations of protonated and deprotonated species are dictated by surface-bulk equilibria which can be calculated from thermodynamic considerations. Notably we conclude that the surface dissociation constant of soluble surfactants cannot be directly obtained from these experimental measurements, however, we show that molecular dynamics (MD) simulation methods, such as free energy perturbation (FEP), can be used to calculate the surface acid dissociation constant relative to that in the bulk. These simulations show that nonanoic acid is less acidic at the surface compared to in the bulk solution with a p K a shift of 1.1 ± 0.6, yielding a predicted surface p K a of 5.9 ± 0.6. A thermodynamic cycle for nonanoic acid and its conjugate base between the air/water interface and the bulk phase can therefore be established. Furthermore, the effect of salts, namely NaCl, on the surface activity of protonated and deprotonated forms of nonanoic acid is also examined. Interestingly, salts cause both a decrease in the bulk p K a of nonanoic acid and a stabilization of both the protonated and deprotonated forms at the surface. Overall, these results suggest that the deprotonated medium-chain fatty acids under ocean conditions can also be present within the sea surface microlayer (SSML) present at the ocean/atmosphere interface due to the stabilization effect of the salts in the ocean. This allows the transfer of these species into sea spray aerosols (SSAs). More generally, we present a framework with which the behavior of partially soluble species at the air/water interface can be predicted from surface adsorption models and the surface p K a can be predicted from MD simulations.more » « less
-
High-resolution direct absorption infrared spectra of metastable cis-formic acid (HCOOH) trapped in a cis-well resonance behind a 15 kcal/mol barrier are reported for the first time, with the energetically unstable conformer produced in a supersonic slit plasma expansion of trans-formic acid/H 2 mixtures. We present a detailed high-resolution rovibrational analysis for cis-formic acid species in the OH stretch ( ν 1 ) fundamental, providing first precision vibrational band origin, rotational constants, and term values, which in conjunction with ab initio calculations at the couple-cluster with single, double, and perturbative triple [CCSD(T)]/ANOn (n = 0, 1, 2) level support the experimental assignments and establish critical points on the potential energy surface for internal rotor trans-to-cis isomerization. Relative intensities for a- and b-type transitions observed in the spectra permit the transition dipole moment components to be determined in the body fixed frame and prove to be in good agreement with ab initio CCSD(T) theoretical estimates but in poor agreement with simple bond-dipole predictions. The observed signal dependence on H 2 in the discharge suggests the presence of a novel H atom radical chemical mechanism for strongly endothermic “up-hill” internal rotor isomerization between trans- and cis-formic acid conformers.more » « less