skip to main content

Title: Global airborne sampling reveals a previously unobserved dimethyl sulfide oxidation mechanism in the marine atmosphere
Dimethyl sulfide (DMS), emitted from the oceans, is the most abundant biological source of sulfur to the marine atmosphere. Atmospheric DMS is oxidized to condensable products that form secondary aerosols that affect Earth’s radiative balance by scattering solar radiation and serving as cloud condensation nuclei. We report the atmospheric discovery of a previously unquantified DMS oxidation product, hydroperoxymethyl thioformate (HPMTF, HOOCH 2 SCHO), identified through global-scale airborne observations that demonstrate it to be a major reservoir of marine sulfur. Observationally constrained model results show that more than 30% of oceanic DMS emitted to the atmosphere forms HPMTF. Coincident particle measurements suggest a strong link between HPMTF concentration and new particle formation and growth. Analyses of these observations show that HPMTF chemistry must be included in atmospheric models to improve representation of key linkages between the biogeochemistry of the ocean, marine aerosol formation and growth, and their combined effects on climate.
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Award ID(s):
Publication Date:
Journal Name:
Proceedings of the National Academy of Sciences
Page Range or eLocation-ID:
4505 to 4510
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Oceanic emissions of dimethyl sulfide (CH3SCH3,DMS) have long been recognized to impact aerosol particle composition andsize, the concentration of cloud condensation nuclei (CCN), and Earth'sradiation balance. The impact of oceanic emissions of methanethiol(CH3SH, MeSH), which is produced by the same oceanic precursor as DMS,on the volatile sulfur budget of the marine atmosphere is largelyunconstrained. Here we present direct flux measurements of MeSH oceanicemissions using the eddy covariance (EC) method with a high-resolutionproton-transfer-reaction time-of-flight mass spectrometer (PTR-ToFMS)detector and compare them to simultaneous flux measurements of DMS emissionsfrom a coastal ocean site. Campaign mean mixing ratios of DMS and MeSH were72 ppt (28–90 ppt interquartile range) and 19.1 ppt (7.6–24.5 pptinterquartile range), respectively. Campaign mean emission fluxes of DMS (FDMS) and MeSH (FMeSH) were 1.13 ppt m s−1 (0.53–1.61 ppt m s−1 interquartile range) and 0.21 ppt m s−1 (0.10–0.31 ppt m s−1 interquartile range), respectively. Linear least squares regression of observed MeSH and DMS flux indicates the emissions are highly correlatedwith each other (R2=0.65) over the course of the campaign,consistent with a shared oceanic source. The campaign mean DMS to MeSH fluxratio (FDMS:FMeSH) was 5.5 ± 3.0, calculated from the ratio of 304 individual coincident measurements of FDMS and FMeSH. Measured FDMS:FMeSH was weakly correlated (R2=0.15) withocean chlorophyll concentrations, with FDMS:FMeSH reaching a maximumof 10.8 ± 4.4 during a phytoplankton bloommore »period. No other volatilesulfur compounds were observed by PTR-ToFMS to have a resolvable emissionflux above their flux limit of detection or to have a gas-phase mixing ratio consistently above their limit of detection during the study period,suggesting DMS and MeSH are the dominant volatile organic sulfur compoundsemitted from the ocean at this site. The impact of this MeSH emission source on atmospheric budgets of sulfurdioxide (SO2) was evaluated by implementing observed emissions in a coupled ocean–atmosphere chemical box model using a newly compiled MeSHoxidation mechanism. Model results suggest that MeSH emissions lead toafternoon instantaneous SO2 production of 2.5 ppt h−1, which results in a 43 % increase in total SO2 production compared to a casewhere only DMS emissions are considered and accounts for 30% of theinstantaneous SO2 production in the marine boundary layer at the meanmeasured FDMS and FMeSH. This contribution of MeSH to SO2production is driven by a higher effective yield of SO2 from MeSHoxidation and the shorter oxidation lifetime of MeSH compared to DMS. Thislarge additional source of marine SO2 has not been previouslyconsidered in global models of marine sulfur cycling. The field measurementsand modeling results presented here demonstrate that MeSH is an importantcontributor to volatile sulfur budgets in the marine atmosphere and must be measured along with DMS in order to constrain marine sulfur budgets. Thislarge additional source of marine–reduced sulfur from MeSH will contribute to particle formation and growth and CCN abundance in the marine atmosphere, with subsequent impacts on climate.« less
  2. Oceans emit large quantities of dimethyl sulfide (DMS) to the marine atmosphere. The oxidation of DMS leads to the formation and growth of cloud condensation nuclei (CCN) with consequent effects on Earth’s radiation balance and climate. The quantitative assessment of the impact of DMS emissions on CCN concentrations necessitates a detailed description of the oxidation of DMS in the presence of existing aerosol particles and clouds. In the unpolluted marine atmosphere, DMS is efficiently oxidized to hydroperoxymethyl thioformate (HPMTF), a stable intermediate in the chemical trajectory toward sulfur dioxide (SO 2 ) and ultimately sulfate aerosol. Using direct airborne flux measurements, we demonstrate that the irreversible loss of HPMTF to clouds in the marine boundary layer determines the HPMTF lifetime ( τ HPMTF < 2 h) and terminates DMS oxidation to SO 2 . When accounting for HPMTF cloud loss in a global chemical transport model, we show that SO 2 production from DMS is reduced by 35% globally and near-surface (0 to 3 km) SO 2 concentrations over the ocean are lowered by 24%. This large, previously unconsidered loss process for volatile sulfur accelerates the timescale for the conversion of DMS to sulfate while limiting new particle formation inmore »the marine atmosphere and changing the dynamics of aerosol growth. This loss process potentially reduces the spatial scale over which DMS emissions contribute to aerosol production and growth and weakens the link between DMS emission and marine CCN production with subsequent implications for cloud formation, radiative forcing, and climate.« less
  3. A major fraction of atmospheric aerosol particles, which affect both air quality and climate, form from gaseous precursors in the atmosphere. Highly oxygenated organic molecules (HOMs), formed by oxidation of biogenic volatile organic compounds, are known to participate in particle formation and growth. However, it is not well understood how they interact with atmospheric pollutants, such as nitrogen oxides (NO x ) and sulfur oxides (SO x ) from fossil fuel combustion, as well as ammonia (NH 3 ) from livestock and fertilizers. Here, we show how NO x suppresses particle formation, while HOMs, sulfuric acid, and NH 3 have a synergistic enhancing effect on particle formation. We postulate a novel mechanism, involving HOMs, sulfuric acid, and ammonia, which is able to closely reproduce observations of particle formation and growth in daytime boreal forest and similar environments. The findings elucidate the complex interactions between biogenic and anthropogenic vapors in the atmospheric aerosol system.
  4. Abstract. The oxidation of dimethyl sulfide (DMS;CH3SCH3), emitted from the surface ocean, contributes to theformation of Aitken mode particles and their growth to cloud condensationnuclei (CCN) sizes in remote marine environments. It is not clear whetherother less commonly measured marine-derived, sulfur-containing gases sharesimilar dynamics to DMS and contribute to secondary marine aerosolformation. Here, we present measurements of gas-phase volatile organosulfurmolecules taken with a Vocus proton-transfer-reaction high-resolutiontime-of-flight mass spectrometer during a mesocosm phytoplankton bloomexperiment using coastal seawater. We show that DMS, methanethiol (MeSH;CH3SH), and benzothiazole (C7H5NS) account for on averageover 90 % of total gas-phase sulfur emissions, with non-DMS sulfur sourcesrepresenting 36.8 ± 7.7 % of sulfur emissions during the first 9 d of the experiment in the pre-bloom phase prior to major biologicalgrowth, before declining to 14.5 ± 6.0 % in the latter half of theexperiment when DMS dominates during the bloom and decay phases. The molarratio of DMS to MeSH during the pre-bloom phase (DMS : MeSH = 4.60 ± 0.93) was consistent with the range of previously calculated ambient DMS-to-MeSH sea-to-air flux ratios. As the experiment progressed, the DMS to MeSHemission ratio increased significantly, reaching 31.8 ± 18.7 duringthe bloom and decay. Measurements of dimethylsulfoniopropionate (DMSP),heterotrophic bacteria, and enzyme activity in the seawater suggest theDMS : MeSH ratio is a sensitive indicator of the bacterial sulfurmore »demand andthe composition and magnitude of available sulfur sources in seawater. Theevolving DMS : MeSH ratio and the emission of a new aerosol precursor gas,benzothiazole, have important implications for secondary sulfate formationpathways in coastal marine environments.« less
  5. Abstract. Nucleation of atmospheric vapours produces more than half of global cloudcondensation nuclei and so has an important influence on climate. Recentstudies show that monoterpene (C10H16) oxidation yieldshighly oxygenated products that can nucleate with or without sulfuric acid.Monoterpenes are emitted mainly by trees, frequently together with isoprene(C5H8), which has the highest global emission of all organicvapours. Previous studies have shown that isoprene suppresses new-particleformation from monoterpenes, but the cause of this suppression is underdebate. Here, in experiments performed under atmospheric conditions in theCERN CLOUD chamber, we show that isoprene reduces the yield ofhighly oxygenated dimers with 19 or 20 carbon atoms – which drive particlenucleation and early growth – while increasing the production of dimers with14 or 15 carbon atoms. The dimers (termed C20 and C15,respectively) are produced by termination reactions between pairs of peroxyradicals (RO2⚫) arising from monoterpenes or isoprene.Compared with pure monoterpene conditions, isoprene reduces nucleation ratesat 1.7 nm (depending on the isoprene ∕ monoterpene ratio) and approximatelyhalves particle growth rates between 1.3 and 3.2 nm. However, above 3.2 nm,C15 dimers contribute to secondary organic aerosol, and the growth ratesare unaffected by isoprene. We further show that increased hydroxyl radical(OH⚫) reduces particle formation in our chemical system ratherthan enhances it as previously proposed,more »since it increases isoprene-derivedRO2⚫ radicals that reduce C20 formation.RO2⚫ termination emerges as the critical step that determinesthe highly oxygenated organic molecule (HOM) distribution and the corresponding nucleation capability. Speciesthat reduce the C20 yield, such as NO, HO2 and as we showisoprene, can thus effectively reduce biogenic nucleation and early growth.Therefore the formation rate of organic aerosol in a particular region ofthe atmosphere under study will vary according to the precise ambientconditions.« less