Abstract The formation of platelet ice is well known to occur under Antarctic sea ice, where subice platelet layers form from supercooled ice shelf water. In the Arctic, however, platelet ice formation has not been extensively observed, and its formation and morphology currently remain enigmatic. Here, we present the first comprehensive, long‐term in situ observations of a decimeter thick subice platelet layer under free‐drifting pack ice of the Central Arctic in winter. Observations carried out with a remotely operated underwater vehicle (ROV) during the midwinter leg of the MOSAiC drift expedition provide clear evidence of the growth of platelet ice layers from supercooled water present in the ocean mixed layer. This platelet formation takes place under all ice types present during the surveys. Oceanographic data from autonomous observing platforms lead us to the conclusion that platelet ice formation is a widespread but yet overlooked feature of Arctic winter sea ice growth.
more »
« less
How Size and Aggregation of Ice-Binding Proteins Control Their Ice Nucleation Efficiency
- Award ID(s):
- 1305427
- PAR ID:
- 10150068
- Date Published:
- Journal Name:
- Journal of the American Chemical Society
- Volume:
- 141
- Issue:
- 18
- ISSN:
- 0002-7863
- Page Range / eLocation ID:
- 7439 to 7452
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Integrating field data, remote satellite imagery, scientific analysis, and multimedia visual representation to document Arctic ice that is disappearing due to climate change, this artwork is the outcome of a four-year collaboration involving art, design, and polar science between artist Cy Keener, landscape researcher Justine Holzman, climatologist Ignatius Rigor, and scientist John Woods. With this work, Keener and Holzman’s goal is to make scientific data tangible, visceral, and experiential. They ask how artistic and creative practices can contribute to scientific endeavors while making scientific research visible to the public.more » « less
-
Abstract We present new data from the debris-rich basal ice layers of the NEEM ice core (NW Greenland). Using mineralogical observations, SEM imagery, geochemical data from silicates (meteoric10Be, εNd,87Sr/86Sr) and organic material (C/N, δ13C), we characterize the source material, succession of previous glaciations and deglaciations and the paleoecological conditions during ice-free episodes. Meteoric10Be data and grain features indicate that the ice sheet interacted with paleosols and eroded fresh bedrock, leading to mixing in these debris-rich ice layers. Our analysis also identifies four successive stages in NW Greenland: (1) initial preglacial conditions, (2) glacial advance 1, (3) glacial retreat and interglacial conditions and (4) glacial advance 2 (current ice-sheet development). C/N and δ13C data suggest that deglacial environments favored the development of tundra and taiga ecosystems. These two successive glacial fluctuations observed at NEEM are consistent with those identified from the Camp Century core basal sediments over the last 3 Ma. Further inland, GRIP and GISP2 summit sites have remained glaciated more continuously than the western margin, with less intense ice-substratum interactions than those observed at NEEM.more » « less
An official website of the United States government

