skip to main content

Title: Sex chromosomes and sex-specific molecular markers in Indo-Pacific combtooth blennies (Blenniidae, Istiblennius)
Authors:
; ; ; ;
Award ID(s):
1659595
Publication Date:
NSF-PAR ID:
10150146
Journal Name:
Marine Ecology Progress Series
Volume:
627
Page Range or eLocation-ID:
195 to 200
ISSN:
0171-8630
Sponsoring Org:
National Science Foundation
More Like this
  1. Shaffer, Bradley (Ed.)
    Abstract Rising global temperatures threaten to disrupt population sex ratios, which can in turn cause mate shortages, reduce population growth and adaptive potential, and increase extinction risk, particularly when ratios are male biased. Sex ratio distortion can then have cascading effects across other species and even ecosystems. Our understanding of the problem is limited by how often studies measure temperature effects in both sexes. To address this, the current review surveyed 194 published studies of heat tolerance, finding that the majority did not even mention the sex of the individuals used, with <10% reporting results for males and females separately. Although the data are incomplete, this review assessed phylogenetic patterns of thermally induced sex ratio bias for 3 different mechanisms: sex-biased heat tolerance, temperature-dependent sex determination (TSD), and temperature-induced sex reversal. For sex-biased heat tolerance, documented examples span a large taxonomic range including arthropods, chordates, protists, and plants. Here, superior heat tolerance is more common in females than males, but the direction of tolerance appears to be phylogenetically fluid, perhaps due to the large number of contributing factors. For TSD, well-documented examples are limited to reptiles, where high temperature usually favors females, and fishes, where high temperature consistently favors males.more »For temperature-induced sex reversal, unambiguous cases are again limited to vertebrates, and high temperature usually favors males in fishes and amphibians, with mixed effects in reptiles. There is urgent need for further work on the full taxonomic extent of temperature-induced sex ratio distortion, including joint effects of the multiple contributing mechanisms.« less
  2. Species displaying temperature-dependent sex determination (TSD) are especially vulnerable to the effects of a rapidly changing global climate due to their profound sensitivity to thermal cues during development. Predicting the consequences of climate change for these species, including skewed offspring sex ratios, depends on understanding how climatic factors interface with features of maternal nesting behaviour to shape the developmental environment. Here, we measure thermal profiles in 86 nests at two geographically distinct sites in the northern and southern regions of the American alligator's ( Alligator mississippiensis ) geographical range, and examine the influence of both climatic factors and maternally driven nest characteristics on nest temperature variation. Changes in daily maximum air temperatures drive annual trends in nest temperatures, while variation in individual nest temperatures is also related to local habitat factors and microclimate characteristics. Without any compensatory nesting behaviours, nest temperatures are projected to increase by 1.6–3.7°C by the year 2100, and these changes are predicted to have dramatic consequences for offspring sex ratios. Exact sex ratio outcomes vary widely depending on site and emission scenario as a function of the unique temperature-by-sex reaction norm exhibited by all crocodilians. By revealing the ecological drivers of nest temperature variation in themore »American alligator, this study provides important insights into the potential consequences of climate change for crocodilian species, many of which are already threatened by extinction.« less