skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.

Title: Electrically Active Tropical Cyclone Diurnal Pulses in the Atlantic Basin
While the frequency and structure of Atlantic basin tropical cyclone diurnal cooling and warming pulses have recently been explored, how often diurnal pulses are associated with deep convection was left unanswered. Here, storm-relative, GridSat-B1, 6-h IR brightness temperature difference fields were supplemented with World Wide Lightning Location Network (WWLLN) data to answer that question. Electrically active, long-lived cooling and warming pulses were defined objectively by determining critical thresholds for the lightning flash density, areal coverage, and longevity within each pulse. Pulses with lightning occurred 61% of the time, with persistently electrically active pulses (≥9 h, ACT) occurring on 38% of pulse days and quasi–electrically active pulses (3–6 h, QUASI) occurring on 23% of pulse days. Electrically inactive pulses (<3 h, INACT) occurred 39% of the time. ACT pulse days had more pulses located right-of-shear, the preferred quadrant for outer-rainband lightning activity, and were associated with more favorable environmental conditions than INACT pulse days. Cooling pulses were more likely to occur in lower-shear environments while warming pulses were more likely to occur in high-shear environments. Finally, while the propagation speeds of ACT and INACT cooling pulses and ACT warming pulses did lend support to the recent gravity wave and tropical squall-line explanations of diurnal pulses, the INACT warming pulses did not and should be studied further.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Monthly Weather Review
Page Range / eLocation ID:
3595 to 3607
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent research has found that diurnal pulses are ubiquitous features of tropical cyclones. To gain further insight into the characteristics of these pulses, a case study of an electrically active (ACT) cooling pulse and an off-the-clock ACT cooling pulse that occurred in Hurricane Harvey (2017) was conducted. Using GridSat-B1 IR brightness temperatures, World Wide Lightning Location Network (WWLLN) lightning data, the 85–91-GHz channels on microwave satellite imagers, and Level-II Doppler radar reflectivity data from WSR-88D stations (i.e., NEXRAD), these pulses were found to share many similar characteristics: both propagated outward on the right-of-shear side of Harvey and were associated with elevated cloud ice content and high reflectivity. Additionally, using HRRR model output, both pulses were found to be associated with 1) column-deep total condensate, 2) a surface cold pool, 3) an overturning circulation, and 4) an enhanced low-level jet. These characteristics are similar to those found in tropical squall lines, supporting the tropical squall-line interpretation of diurnal pulses put forth in recent studies. A hypothesis for ACT pulse initiation was then introduced, tested, and confirmed: inner rainbands that propagated outward into a more favorable environment for deep convection reinvigorated into ACT pulses that had tropical squall-line characteristics.

    more » « less
  2. Storm-centered IR brightness temperature imagery was used to create 6-h IR brightness temperature difference fields for all Atlantic basin tropical cyclones from 1982 to 2017. Pulses of colder cloud tops were defined objectively by determining critical thresholds for the magnitude of the IR differences, areal coverage of cold-cloud tops, and longevity. Long-lived cooling pulses (≥9 h) were present on 45% of days overall, occurring on 80% of major hurricane days, 64% of minor hurricane days, 46% of tropical storm days, and 24% of tropical depression days. These cooling pulses propagated outward between 8 and 14 m s−1. Short-lived cooling pulses (3–6 h) were found 26.4% of the time. Some days without cooling pulses had events of the opposite sign, which were labeled warming pulses. Long-lived warming pulses occurred 8.5% of the time and propagated outward at the same speed as their cooling pulse counterparts. Only 12.2% of days had no pulses that met the criteria, indicating that pulsing is nearly ubiquitous in tropical cyclones. The environment prior to outward propagation of cooling pulses differed from warming pulse and no pulse days by having more favorable conditions between 0000 and 0300 LT for enhanced inner-core convection: higher SST and ocean heat content, more moisture throughout the troposphere, and stronger low-level vorticity and upper-level divergence.

    more » « less
  3. In this study, we analyze 44 terrestrial gamma-ray flashes (TGFs) detected by the Fermi Gamma-ray Burst Monitor (GBM) occurring in 2014–2016 in conjunction with data from the U.S. National Lightning Detection Network (NLDN). We examine the characteristics of magnetic field waveforms measured by NLDN sensors for 61 pulses that occurred within 5 ms of the start-time of the TGF photon flux. For 21 (out of 44) TGFs, the associated NLDN pulse occurred almost simultaneously with (that is, within 200 μs of) the TGF. One TGF had two NLDN pulses within 200 μs. The median absolute time interval between the beginning of these near-simultaneous pulses and the TGF flux start-time is 50 μs. We speculate that these RF pulses are signatures of either TGF-associated relativistic electron avalanches or currents traveling in conducting paths “preconditioned” by TGF-associated electron beams. Compared to pulses that were not simultaneous with TGFs (but within 5 ms of one), simultaneous pulses had higher median absolute peak current (26 kA versus 11 kA), longer median threshold-to-peak rise time (14 μs versus 2.8 μs), and longer median peak-to-zero time (15 μs versus 5.5 μs). A majority (77%) of our simultaneous RF pulses had NLDN-estimated peak currents less than 50 kA indicating that TGF emissions can be associated with moderate-peak-amplitude processes. The lightning flash associated with one of the TGFs in our data set was observed by a Lightning Mapping Array, which reported a relatively high-power source at an altitude of 25 km occurring 101 μs after the GBM-reported TGF discovery-bin start-time. 
    more » « less
  4. Abstract

    While most mammals show birth hour peaks at times of the 24-h cycle when they are less active, there are exceptions to this general pattern. Such exceptions have been little explored, but may clarify evolutionary reasons for the diel timing of births. We investigated intraspecific variation in birth hour in wild blue monkeys Cercopithecus mitis stuhlmanni, a diurnal primate, to identify factors that differentiated daytime versus nighttime births. Behavioral and life history data from 14 groups over 14 years revealed that 4% of 484 births occurred during the day. Probability of daytime birth varied with mother’s age, peaking at 15.7 years. Births whose annual timing deviated most from the population’s peak birth months were 5 times more likely to occur during daytime than those that deviated less. There was no evidence that mother’s rank or infant sex influenced birth hour, and mixed evidence that daytime births were more probable in larger groups. Survivorship did not differ significantly for infants born during the day versus night. Prime-aged mothers may be able to handle the consequences of an unusual birth hour more successfully than mothers with less experience or those weakened by age. Daytime birth may be more advantageous in the off-season because nights are colder at that time of year. These findings are consistent with hypotheses relating birth hour to the risk of losing social protection in group-living animals, but are not consistent with those emphasizing risk of conspecific harassment. Patterns of within-species variation can help in evaluating evolutionary hypotheses for non-random birth hour.

    more » « less
  5. Influenced by weather, the estuaries and bays often exhibit recurring oscillations in flow and water level similar to astronomical tides. The weather impact however is less regular than tides and more difficult to predict. The spectrum of weather induced motions in estuaries and bays is mostly at the low-frequency end with time scales longer than those of diurnal tides. The repeated weather impact produces meteorological tide: the recurring flood and ebb and flushing of the estuaries and bays but at lower frequencies than those of tides. The variation in weather conditions is quasi-periodic and of large scale nature (~1000−3000 km) because of the alternating low- and high- atmospheric pressure systems of extra-tropical cyclones and anti-cyclones and associated fronts. By examining 40 years of data between Jan. 1, 1977 and Dec. 31, 2016, we identified 1648 frontal events (averaging ~41.2±4.7 per year) influencing the northern Gulf of Mexico for time periods in the spring, fall and winter. The late spring and summer months (May, Jun, July, and August) were not included in the calculation because of much weaker activities involving synoptic weather systems with fronts during these months. It is found that the number of frontal events reached the maximum in Jan. and Dec. while the minimum occurred in April and Sept. It is found that there is an increasing trend of number of fronts over the 40-year period. Our data show that the low pass filtered water level, velocity, and vorticity (velocity shear) all vary in response to the weather and appear as the meteorological tide. The particle excursions of meteorological tides are much larger than those from the astronomical tides. In addition, the irregular nature of the meteorological tide makes the inward flux and outward flux asymmetric in general and thus it has a significant implication to dispersion and transport of waterborne materials. A scaling analysis shows that the meteorological tide generally reaches quasi-steady state; and as a result, a regression model is established which can be very useful for predicting the weather produced quasi-periodic motions. 
    more » « less