- Publication Date:
- NSF-PAR ID:
- 10183708
- Journal Name:
- Journal of Atmospheric and Oceanic Technology
- Volume:
- 37
- Issue:
- 8
- Page Range or eLocation-ID:
- 1457 to 1475
- ISSN:
- 0739-0572
- Sponsoring Org:
- National Science Foundation
More Like this
-
Polarimetric and Electrical Structure of the 19 May 2013 Edmond–Carney, Oklahoma, Tornadic SupercellAbstract We demonstrate the utility of transient polarimetric signatures ( Z DR and K DP columns, a proxy for surges in a thunderstorm updraft) to explain variability in lightning flash rates in a tornadic supercell. Observational data from a WSR-88D and the Oklahoma lightning mapping array are used to map the temporal variance of polarimetric signatures and VHF sources from lightning channels. It is shown, via three-dimensional and cross-sectional analyses, that the storm was of inverted polarity resulting from anomalous electrification. Statistical analysis confirms that mean flash area in the Z DR column region was 10 times smaller than elsewhere in the storm. On an average, 5 times more flash initiations occurred within Z DR column regions, thereby supporting existing theory of an inverse relationship between flash initiation rates and lightning channel extent. Segmentation and object identification algorithms are applied to gridded radar data to calculate metrics such as height, width, and volume of Z DR and K DP columns. Variability in lightning flash rates is best explained by the fluctuations in Z DR column volume with a Spearman’s rank correlation coefficient value of 0.72. The highest flash rates occur in conjunction with the deepest Z DR columns (up tomore »
-
Abstract This study describes results from video observations of five intracloud flashes located ≤ 20 km from the camera and recorded with 6.1 µs exposure time and 6.66 µs frame intervals. Video data are supported with electric field change (E-change) and VHF measurements, with emphasis on the flash initiating event (IE) and initial breakdown (IB) stage. In four of the five flashes, the IE is accompanied by weak luminosity, ≤ 5% above background, lasting for 300–500 µs. Two of these four IEs were positive Narrow Bipolar Events (NBEs) with VHF powers of 43 and 990 W; these are the first (known) data showing visible light detected with a positive NBE. Two other IEs with weak luminosity had powers of 0.5 and 1 W, and the IE with no detected luminosity had a VHF power of 3 W. A typical IB cluster consists of several narrow pulses and one classic pulse in E-change data (along with many VHF pulses), and each example flash has 2–10 IB clusters in the first 5–50 ms. The luminosity of IB clusters was substantially greater than IE luminosity, ranging from 10 to 40% above background in four examples, while for one flash with 10 IB clusters, the luminosity range was 35–360% above background (average 190%). Luminosity durationsmore »
-
In this study, we analyze 44 terrestrial gamma-ray flashes (TGFs) detected by the Fermi Gamma-ray Burst Monitor (GBM) occurring in 2014–2016 in conjunction with data from the U.S. National Lightning Detection Network (NLDN). We examine the characteristics of magnetic field waveforms measured by NLDN sensors for 61 pulses that occurred within 5 ms of the start-time of the TGF photon flux. For 21 (out of 44) TGFs, the associated NLDN pulse occurred almost simultaneously with (that is, within 200 μs of) the TGF. One TGF had two NLDN pulses within 200 μs. The median absolute time interval between the beginning of these near-simultaneous pulses and the TGF flux start-time is 50 μs. We speculate that these RF pulses are signatures of either TGF-associated relativistic electron avalanches or currents traveling in conducting paths “preconditioned” by TGF-associated electron beams. Compared to pulses that were not simultaneous with TGFs (but within 5 ms of one), simultaneous pulses had higher median absolute peak current (26 kA versus 11 kA), longer median threshold-to-peak rise time (14 μs versus 2.8 μs), and longer median peak-to-zero time (15 μs versus 5.5 μs). A majority (77%) of our simultaneous RF pulses had NLDN-estimated peak currents less than 50more »
-
Abstract Lightning is frequently initiated within the convective regions of thunderstorms, and so flash rates tend to follow trends in updraft speed and volume. It has been suggested that lightning production is linked to the turbulent flow generated by updrafts as turbulent eddies organize charged hydrometeors into complex charge structures. These complex charge structures consist of local regions of increased charge magnitudes between which flash-initiating electric fields may be generated. How turbulent kinematics influences lightning production, however, remains unclear. In this study, lightning flashes produced in a multicell and two supercell storms simulated using The Collaborative Model for Multiscale Atmospheric Simulation (COMMAS) were examined to identify the kinematic flow structures within which they occurred. By relating the structures of updrafts to thermals, initiated lightning flashes were expected to be located where the rate of strain and rotational flow are equal, or between updraft and eddy flow features. Results showed that the average lightning flash is initiated in kinematic flow structures dominated by vortical flow patterns, similar to those of thermals, and the structures’ kinematics are characterized by horizontal vorticity and vertical shearing. These kinematic features were common across all cases and demonstrated that where flash-initiating electric fields are generated ismore »
-
Abstract In Part I, an electrification scheme was described and a simulation of an observed cold-based storm from the U.S. Great Plains was validated with electrical observations. Most charge in the storm was separated by rebounding collisions of secondary ice originating from prior graupel–snow collisions. In this Part II, sensitivity tests are performed with the control simulation (Part I) and influences from environmental factors (aerosols, temperature, moisture, and shear) on lightning are elucidated. Environmental factors [e.g., convective available potential energy (CAPE)] controlling updraft speed are salient. When ascent is reduced by 30% and 70%, flashes become 70% fewer and disappear, respectively; faster ascent promotes positive cloud-to-ground (+CGs) flashes. Since cloud base is too cold (1°C) for coalescence, cloud condensation nucleus aerosol concentrations do not influence the lightning appreciably. The electrical response to varying concentrations of active ice nuclei is limited by most ice particles being secondary and less sensitive—a natural “buffer.” Imposing a maritime sounding suggests that the land–sea contrast in lightning for such storms is due to the vertical structure of environmental temperature and humidity. Weak CAPE, and both entrainment and condensate weight from a low cloud base, suppress ascent and charging. Maritime thermodynamic conditions reduce simulated flash ratesmore »