skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Numerical and Experimental Investigation of Vertically Aligned Carbon Nanotube-Phase Change Material Composites for Thermal Management of Electronics
Electronic system layouts have increasingly become smaller and more compact. To address the growing demand for performance, dynamic thermal management with thermal energy storage has emerged as an attractive solution. Phase change materials (PCM) can store and release large amounts of heat through melting or solidification. However, they are limited by their thermal conductivity, which is several orders of magnitude lower than traditional heat sinks. To address this design weakness, we have developed a novel composite consisting of vertically aligned carbon nanotube arrays infiltrated with PCM to deliver a high thermal conductivity storage medium that also maintains the high latent heat capacity of the native PCM. This study numerically and experimentally investigates the design of an encapsulated CNT-PCM composite and its impact on the temperature rise and peak temperature of an electronic device. Different form factors have been experimentally tested. The composite's impact on a heating element is measured experimentally, and a numerical model is developed and verified using the experimental results. Additional models are designed to evaluate the effect of composite thickness on thermal response.  more » « less
Award ID(s):
1660259
PAR ID:
10151211
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ITHERM 2018
Page Range / eLocation ID:
141 to 146
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study explores the latent thermal energy storage potential of an organic phase change material with porous copper foam and its applicability in electronic cooling under varying heat load conditions. The organic phase change material, n-eicosane, is known for its inherently low thermal conductivity of 0.15 W/mK, rendering it vulnerable during power spikes despite its abundant latent heat energy for phase transition from solid to liquid. Porous copper foams are often integrated into n-eicosane to enhance the composite’s thermal conductivity. However, the volume fraction of the phase change material in the porous foam that optimally improves the thermal performance can be dependent on the boundary condition, the cut-off temperature, and the thickness. A finite difference numerical model was developed and utilized to ascertain the energy consumption for the composite of n-eicosane with two kinds of porous copper foam with varying porosity under different heat rates, cut-off temperatures, and thickness. In addition, the results are compared with a metallic phase change material (gallium), a material chosen with a similar melting point but significantly high thermal conductivity and volumetric latent heat. For validation of the numerical model and to experimentally verify the effect of boundary condition (heat rate), experimental investigation was performed for n-eicosane and high porosity copper foam composite at varying heat rates to observe its melting and solidification behaviors during continuous operation until a cut-off temperature of 70 ◦C is reached. Experiments reveal that heat rate influences the amount of latent energy storage capability until a cutoff temperature is reached. For broad comparison, the numerical model was used to obtain the accessed energy and power density and generate thermal Ragone plots to compare and characterize pure gallium and n-eicosane - porous foam composite with varying volume fractions, cutoff temperature, and thickness under volumetric and gravimetric constraints. Overall, the proposed framework in the form of thermal Ragone plots effectively delineates the optimal points for various combinations of heat rate, cutoff point, and aspect ratio, affirming its utility for comprehensive design guidelines for PCM-based composites for electronic cooling applications 
    more » « less
  2. Abstract This work presents an approach to optimally designing a composite with thermal conductivity enhancers infiltrated with phase change material based on figure of merit (FOM) for thermal management of portable electronic devices. The FOM defines the balance between effective thermal conductivity and energy storage capacity. In this study, thermal conductivity enhancers are in the form of a honeycomb structure. Thermal conductivity enhancers are often used in conjunction with phase change material to enhance the conductivity of the composite medium. Under constrained heat sink volume, the higher volume fraction of thermal conductivity enhancers improves the effective thermal conductivity of the composite, while it reduces the amount of latent heat storage simultaneously. This work arrives at the optimal design of composite for electronic cooling by maximizing the FOM to resolve the stated tradeoff. In this study, the total volume of the composite and the interfacial heat transfer area between the phase change material and thermal conductivity enhancers are constrained for all design points. A benchmarked two-dimensional direct computational fluid dynamics model was employed to investigate the thermal performance of the phase change material and thermal conductivity enhancer composite. Furthermore, assuming conduction-dominated heat transfer in the composite, a simplified effective numerical model that solves the single energy equation with the effective properties of the phase change material and thermal conductivity enhancer has been developed. The effective properties like heat capacity can be obtained by volume averaging; however, effective thermal conductivity (required to calculate FOM) is unknown. The effective thermal conductivity of the composite is obtained by minimizing the error between the transient temperature gradient of direct and simplified model by iteratively varying the effective thermal conductivity. The FOM is maximized to find the optimal volume fraction for the present design. 
    more » « less
  3. This paper presents a study on the characterization of density as a function of temperature for phase change materials (PCMs). More specifically, in this study we analyze organic alkane PCMs, often called paraffins. PCMs are materials that have the ability to absorb a substantial amount of heat during phase transition from solid to liquid, and therefore prove to be useful in thermal energy storage. The density of paraffin wax PCMs is largely dependent on temperature, and during the phase change process, the density decreases dramatically as the PCM transitions from solid to liquid. Consequently, the PCM experiences dramatic volumetric expansion during this transition. Besides the thermal energy storage uses of PCMs, this volumetric expansion that they exhibit is also used in thermal actuator applications, often referred to as wax motors. While density of PCMs does affect their thermal and mechanical performance, the property is not well-characterized within the literature. In this paper, we examine ten paraffin wax PCMs with varying meltingtemperatures and characterize their densities as a function of temperature. This characterization was done usinga piston and cylinder dilatometer test setup within a temperature-controlled thermal chamber that we designedand validated to the well-characterized density properties of water. The density and temperature relationships werefurther analyzed using piecewise linear regression analysis to develop mathematical models of density as it relates totemperature, which will be useful to those wishing to analyze designs in which PCMs are used, such as in PCM-filled heat sinks. 
    more » « less
  4. Inorganic salt hydrates are promising phase-change materials (PCMs) for thermal energy storage due to their high latent heat of fusion. However, their practical application is often limited by their unstable form, dehydration, large supercooling, and low thermal conductivity. Porous melamine foam and its carbonized derivatives are potential supporting porous materials to encapsulate inorganic salt hydrate PCMs to address these problems. This work investigates the effect of pyrolysis temperature on the morphology and structure of the carbonized foams and their thermal energy storage performance. Pyrolysis of melamine foam at 700−900 °C leads to the formation of crystalline sodium cyanate and sodium carbonate particles on the foam skeleton surface, which allows the spontaneous impregnation of the carbon foam with molten CaCl2·6H2O.The form-stable foam-CaCl2·6H2O composite effectively suppresses supercooling and dehydration, demonstrating the efficacy of carbon foam as a promising supporting material for inorganic salt hydrate PCMs. 
    more » « less
  5. null (Ed.)
    Building energy consumption constitutes approximately 40% of total energy usage in the US. zero energy buildings (ZEBs) have received much attention in the last decade as they can alleviate some of the negative impacts that buildings have on the environment. New materials and systems are emerging that can help regulate building enclosure heat losses and gains in a passive manner, possibly leading to more cost effective ZEBs. A novel thermo-optically responsive solid–solid phase change material (SS-PCM) coating has been developed to help offset heat gains or losses in building enclosures. The study investigates the optical and thermal processes of the SS-PCM, as well as the synergies among different layers within the enclosure system, through a series of numerical simulations. The impacts of the solar incoming angle and phase transition temperature on the absorptivity of the SS-PCM, which have a significant influence on the optical and thermal transfer processes, are explored. The feasibility and benefits of using the SS-PCM system in building enclosures under both warm and cold climates are investigated. Simulation results: (1) confirm the potential of the SS-PCM coatings to reduce undesirable heat exchange through building enclosure in all orientations and identify the roof as the preferred location of installing the SS-PCM system; (2) substantiate the thermal benefits of the system throughout the year and determine the optimal phase transition temperature of the SS-PCM with maximal energy saving; and (3) demonstrate more thermal benefits and energy saving of the SS-PCM coatings in warm climates compared to cold climates, which has been a challenge for most of existing passive solar facades. 
    more » « less