Remote and minimally‐invasive modulation of biological systems with light has transformed modern biology and neuroscience. However, light absorption and scattering significantly prevents penetration to deep brain regions. Herein, we describe the use of gold‐coated mechanoresponsive nanovesicles, which consist of liposomes made from the artificial phospholipid Rad‐PC‐Rad as a tool for the delivery of bioactive molecules into brain tissue. Near‐infrared picosecond laser pulses activated the gold‐coating on the surface of nanovesicles, creating nanomechanical stress and leading to near‐complete vesicle cargo release in sub‐seconds. Compared to natural phospholipid liposomes, the photo‐release was possible at 40 times lower laser energy. This high photosensitivity enables photorelease of molecules down to a depth of 4 mm in mouse brain. This promising tool provides a versatile platform to optically release functional molecules to modulate brain circuits.
Remote and minimally‐invasive modulation of biological systems with light has transformed modern biology and neuroscience. However, light absorption and scattering significantly prevents penetration to deep brain regions. Herein, we describe the use of gold‐coated mechanoresponsive nanovesicles, which consist of liposomes made from the artificial phospholipid Rad‐PC‐Rad as a tool for the delivery of bioactive molecules into brain tissue. Near‐infrared picosecond laser pulses activated the gold‐coating on the surface of nanovesicles, creating nanomechanical stress and leading to near‐complete vesicle cargo release in sub‐seconds. Compared to natural phospholipid liposomes, the photo‐release was possible at 40 times lower laser energy. This high photosensitivity enables photorelease of molecules down to a depth of 4 mm in mouse brain. This promising tool provides a versatile platform to optically release functional molecules to modulate brain circuits.
more » « less- Award ID(s):
- 1631910
- PAR ID:
- 10152069
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie
- Volume:
- 132
- Issue:
- 22
- ISSN:
- 0044-8249
- Page Range / eLocation ID:
- p. 8686-8693
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
The possibility of regulating cell signaling with high spatial and temporal resolution within individual cells and complex cellular networks has important implications in biomedicine. This article demonstrates a general strategy that uses near‐infrared tissue‐penetrating laser pulses to uncage biomolecules from plasmonic gold‐coated liposomes, i.e., plasmonic liposomes, to activate cell signaling in a nonthermal, ultrafast, and highly controllable fashion. Near‐infrared picosecond laser pulse induces transient nanobubbles around plasmonic liposomes. The mechanical force generated from the collapse of nanobubbles rapidly ejects encapsulated compound within 0.1 ms. This article shows that single pulse irradiation triggers the rapid intracellular uncaging of calcein from plasmonic liposomes inside endolysosomes. The uncaged calcein then evenly distributes over the entire cytosol and nucleus. Furthermore, this article demonstrates the ability to trigger calcium signaling in both an immortalized cell line and primary dorsal root ganglion neurons by intracellular uncaging of inositol triphosphate (IP3), an endogenous cell calcium signaling second messenger. Compared with other uncaging techniques, this ultrafast near‐infrared light‐driven molecular uncaging method is easily adaptable to deliver a wide range of bioactive molecules with an ultrafast optical switch, enabling new possibilities to investigate signaling pathways within individual cells and cellular networks.
-
Abstract Plasmonic vesicle consists of multiple gold nanocrystals within a polymer coating or around a phospholipid core. As a multifunctional nanostructure, it has unique advantages of assembling small nanoparticles (<5 nm) for rapid renal clearance, strong plasmonic coupling for ultrasensitive biosensing and imaging, and near‐infrared light absorption for drug release. Thus, understanding the interaction of plasmonic vesicles with light is critically important for a wide range of applications. In this paper, a combined experimental and computational study is presented on the nanocrystal transformation in colloidal plasmonic vesicles induced by the ultrafast picosecond pulsed laser. Experimentally observed merging and transformation of small nanocrystals into larger nanoparticles when treated by laser pulses is first reported. The underlying mechanisms responsible for the experimental observations are investigated with a multiphysics computational approach featuring coupled electromagnetic/molecular dynamics simulation. This study reveals for the first time that combined nanoparticle heating and laser‐enhanced Brownian motion is responsible for the observed nanocrystal merging. Correspondingly, laser fluence, interparticle distance, and presence of water are identified as the most important factors governing the nanocrystal transformation. The guidelines established from this study can be employed to design a host of biomedical and nanomanufacturing applications involving laser interaction with plasmonic nanoparticles.
-
Abstract Neuropeptides are abundant signaling molecules in the central nervous system. Yet remarkably little is known about their spatiotemporal spread and biological activity. Here, we developed an integrated optical approach using
P lasmonic nA novesicles and cell‐based neurotransmitter fluorescent engineered reporter (C NiFE R), or PACE, to probe neuropeptide signaling in the mouse neocortex. Small volumes (fL to pL) of exogenously supplied somatostatin‐14 (SST) can be rapidly released under near‐infrared light stimulation from nanovesicles implanted in the brain and detected by SST2 CNiFERs with nM sensitivity. Our measurements reveal reduced but synchronized SST transmission within 130 μm, and markedly smaller and delayed transmission at longer distances. These measurements enabled a quantitative estimation of the SST loss rate due to peptide degradation and binding. PACE offers a new tool for determining the spatiotemporal scales of neuropeptide volume transmission and signaling in the brain. -
Abstract Neuropeptides are abundant signaling molecules in the central nervous system. Yet remarkably little is known about their spatiotemporal spread and biological activity. Here, we developed an integrated optical approach using
P lasmonic nA novesicles and cell‐based neurotransmitter fluorescent engineered reporter (C NiFE R), or PACE, to probe neuropeptide signaling in the mouse neocortex. Small volumes (fL to pL) of exogenously supplied somatostatin‐14 (SST) can be rapidly released under near‐infrared light stimulation from nanovesicles implanted in the brain and detected by SST2 CNiFERs with nM sensitivity. Our measurements reveal reduced but synchronized SST transmission within 130 μm, and markedly smaller and delayed transmission at longer distances. These measurements enabled a quantitative estimation of the SST loss rate due to peptide degradation and binding. PACE offers a new tool for determining the spatiotemporal scales of neuropeptide volume transmission and signaling in the brain.