The possibility of regulating cell signaling with high spatial and temporal resolution within individual cells and complex cellular networks has important implications in biomedicine. This article demonstrates a general strategy that uses near‐infrared tissue‐penetrating laser pulses to uncage biomolecules from plasmonic gold‐coated liposomes, i.e., plasmonic liposomes, to activate cell signaling in a nonthermal, ultrafast, and highly controllable fashion. Near‐infrared picosecond laser pulse induces transient nanobubbles around plasmonic liposomes. The mechanical force generated from the collapse of nanobubbles rapidly ejects encapsulated compound within 0.1 ms. This article shows that single pulse irradiation triggers the rapid intracellular uncaging of calcein from plasmonic liposomes inside endolysosomes. The uncaged calcein then evenly distributes over the entire cytosol and nucleus. Furthermore, this article demonstrates the ability to trigger calcium signaling in both an immortalized cell line and primary dorsal root ganglion neurons by intracellular uncaging of inositol triphosphate (IP3), an endogenous cell calcium signaling second messenger. Compared with other uncaging techniques, this ultrafast near‐infrared light‐driven molecular uncaging method is easily adaptable to deliver a wide range of bioactive molecules with an ultrafast optical switch, enabling new possibilities to investigate signaling pathways within individual cells and cellular networks.
more » « less- Award ID(s):
- 1631910
- PAR ID:
- 10036548
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 27
- Issue:
- 11
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Infrared spectroscopy has found wide applications in the analysis of biological materials. A more recent development is the use of engineered nanostructures – plasmonic metasurfaces – as substrates for metasurface-enhanced infrared reflection spectroscopy (MEIRS). Here, we demonstrate that strong field enhancement from plasmonic metasurfaces enables the use of MEIRS as a highly informative analytic technique for real-time monitoring of cells. By exposing live cells cultured on a plasmonic metasurface to chemical compounds, we show that MEIRS can be used as a label-free phenotypic assay for detecting multiple cellular responses to external stimuli: changes in cell morphology, adhesion, and lipid composition of the cellular membrane, as well as intracellular signaling. Using a focal plane array detection system, we show that MEIRS also enables spectro-chemical imaging at the single-cell level. The described metasurface-based all-optical sensor opens the way to a scalable, high-throughput spectroscopic assay for live cells.more » « less
-
Abstract The delivery of biomolecules into cells relies on porating the plasma membrane to allow exterior molecules to enter the cell via diffusion. Various established delivery methods, including electroporation and viral techniques, come with drawbacks such as low viability or immunotoxicity, respectively. An optics-based delivery method that uses laser pulses to excite plasmonic titanium nitride (TiN) micropyramids presents an opportunity to overcome these shortcomings. This laser excitation generates localized nano-scale heating effects and bubbles, which produce transient pores in the cell membrane for payload entry. TiN is a promising plasmonic material due to its high hardness and thermal stability. In this study, two designs of TiN micropyramid arrays are constructed and tested. These designs include inverted and upright pyramid structures, each coated with a 50-nm layer of TiN. Simulation software shows that the inverted and upright designs reach temperatures of 875 °C and 307 °C, respectively, upon laser irradiation. Collectively, experimental results show that these reusable designs achieve maximum cell poration efficiency greater than 80% and viability greater than 90% when delivering calcein dye to target cells. Overall, we demonstrate that TiN microstructures are strong candidates for future use in biomedical devices for intracellular delivery and regenerative medicine.
-
Abstract Transitioning from pluripotency to differentiated cell fates is fundamental to both embryonic development and adult tissue homeostasis. Improving our understanding of this transition would facilitate our ability to manipulate pluripotent cells into tissues for therapeutic use. Here, we show that membrane voltage (Vm) regulates the exit from pluripotency and the onset of germ layer differentiation in the embryo, a process that affects both gastrulation and left-right patterning. By examining candidate genes of congenital heart disease and heterotaxy, we identify
KCNH6 , a member of the ether-a-go-go class of potassium channels that hyperpolarizes the Vmand thus limits the activation of voltage gated calcium channels, lowering intracellular calcium. In pluripotent embryonic cells, depletion ofkcnh6 leads to membrane depolarization, elevation of intracellular calcium levels, and the maintenance of a pluripotent state at the expense of differentiation into ectodermal and myogenic lineages. Using high-resolution temporal transcriptome analysis, we identify the gene regulatory networks downstream of membrane depolarization and calcium signaling and discover that inhibition of the mTOR pathway transitions the pluripotent cell to a differentiated fate. By manipulating Vmusing a suite of tools, we establish a bioelectric pathway that regulates pluripotency in vertebrates, including human embryonic stem cells. -
Abstract Detailed, mechanistic models of immune cell behavior across multiple scales in the context of cancer provide clinically relevant insights needed to understand existing immunotherapies and develop more optimal treatment strategies. We highlight mechanistic models of immune cells and their ability to become activated and promote tumor cell killing. These models capture various aspects of immune cells: (a) single‐cell behavior by predicting the dynamics of intracellular signaling networks in individual immune cells, (b) multicellular interactions between tumor and immune cells, and (c) multiscale dynamics across space and different levels of biological organization. Computational modeling is shown to provide detailed quantitative insight into immune cell behavior and immunotherapeutic strategies. However, there are gaps in the literature, and we suggest areas where additional modeling efforts should be focused to more prominently impact our understanding of the complexities of the immune system in the context of cancer.
This article is categorized under:
Biological Mechanisms > Cell Signaling
Models of Systems Properties and Processes > Mechanistic Models
Models of Systems Properties and Processes > Cellular Models
-
Abstract Exposure of carbon‐black (CB) nanoparticles to near‐infrared nanosecond‐pulsed laser energy can cause efficient intracellular delivery of molecules by photoporation. Here, cellular bioeffects of multi‐walled carbon nanotubes (MWCNTs) and single‐walled carbon nanotubes (SWCNTs) are compared to those of CB nanoparticles. In DU145 prostate‐cancer cells, photoporation using CB nanoparticles transitions from (i) cells with molecular uptake to (ii) nonviable cells to (iii) fragmented cells with increasing laser fluence, as seen previously. In contrast, photoporation with MWCNTs causes uptake and, at higher fluence, fragmentation, but does not generate nonviable cells, and SWCNTs show little evidence of bioeffects, except at extreme laser conditions, which generate nonviable cells and fragmentation, but no significant uptake. These different behaviors cannot be explained by photoacoustic pressure output from the particles. All particle types emit a single, ≈100 ns, mostly positive‐pressure pulse that increases in amplitude with laser fluence. Different particle types emit different peak pressures, which are highest for SWCNTs, followed by CB nanoparticles and then MWCNTs, which does not correlate with cellular bioeffects between different particle types. This study concludes that cellular bioeffects depend strongly on the type of carbon nanoparticle used during photoporation and that photoacoustic pressure is unlikely to play a direct mechanistic role in the observed bioeffects.