skip to main content


Title: Nutrient supply controls particulate elemental concentrations and ratios in the low latitude eastern Indian Ocean
Abstract

Variation in ocean C:N:P of particulate organic matter (POM) has led to competing hypotheses for the underlying drivers. Each hypothesis predicts C:N:P equally well due to regional co-variance in environmental conditions and biodiversity. The Indian Ocean offers a unique positive temperature and nutrient supply relationship to test these hypotheses. Here we show how elemental concentrations and ratios vary over daily and regional scales. POM concentrations were lowest in the southern gyre, elevated across the equator, and peaked in the Bay of Bengal. Elemental ratios were highest in the gyre, but approached Redfield proportions northwards. AsProchlorococcusdominated the phytoplankton community, biodiversity changes could not explain the elemental variation. Instead, our data supports the nutrient supply hypothesis. Finally, gyre dissolved iron concentrations suggest extensive iron stress, leading to depressed ratios compared to other gyres. We propose a model whereby differences in iron supply and N2-fixation influence C:N:P levels across ocean gyres.

 
more » « less
NSF-PAR ID:
10153257
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
9
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A past global synthesis of marine particulate organic matter (POM) suggested latitudinal variation in the ratio of surface carbon (C): nitrogen (N): phosphorus (P). However, this synthesis relied on compiled datasets that may have biased the observed pattern. To demonstrate latitudinal shifts in surface C:N:P, we combined hydrographic and POM observations from 28°N to 69°S in the eastern Pacific Ocean (GO‐SHIP line P18). Both POM concentrations and ratios displayed distinct biome‐associated changes. Surface POM concentrations were relatively low in the North Pacific subtropical gyre, increased through the Equatorial Pacific, were lowest in the South Pacific subtropical gyre, and increased through the Southern Ocean. Stoichiometric elemental ratios were systematically above Redfield proportions in warmer regions. However, C:P and N:P gradually decreased across the Southern Ocean despite an abundance of macro‐nutrients. Here, a size‐fraction analysis of POM linked increases in the proportion of large plankton to declining ratios. Subsurface N* values support the hypothesis that accumulated remineralization products of low C:P and N:P exported POM helps maintain the Redfield Ratio of deep nutrients. We finally evaluated stoichiometric models against observations to assess predictive accuracy. We attributed the failure of all models to their inability to capture shifts in the specific nature of nutrient limitation. Our results point to more complex linkages between multinutrient limitation and cellular resource allocation than currently parameterized in models. These results suggest a greater importance of understanding the interaction between the type of nutrient limitation and plankton diversity for predicting the global variation in surface C:N:P.

     
    more » « less
  2. Abstract

    Modern observations indicate that variations in marine phytoplankton stoichiometry correlate with the boundaries of major surface waters. For example, phytoplankton in the oligotrophic subtropical gyres typically have much higher C:N:P ratios (i.e., higher C:P and higher N:P ratios) than those in eutrophic upwelling regions and polar regions. Such a spatial pattern points to nutrient availability as a key environmental driver of stochiometric flexibility. Environmental dependence of phytoplankton C:N:P opens unexplored possibilities for modifying the strength of the biological pump under different climate conditions. Here we present a power law formulation of C:N:P flexibility that is driven by nutrients, temperature, and light. We embed the formulation in a global ocean carbon cycle model with multiple phytoplankton types and explore biogeochemical implications under glacial conditions. We find three key controls on export C:N:P ratio: phytoplankton physiology and community structure as well as the balance in regional production at the global level. Glacial inputs of iron and sea ice expansion are important modifiers of these three controls. We also find that global export C:N:P increases substantially under glacial conditions, and this strongly buffers global carbon export against decrease and draws down approximately 20 μatm of atmospheric CO2. These results point to the importance of including phytoplankton C:N:P flexibility in a mix of mechanisms that drive atmospheric CO2over glacial‐interglacial time scale. Finally, our simulations indicate decoupling of nutrients, which may provide a resolution to the longstanding disagreement regarding nutrient utilization in the glacial Southern Ocean derived from different nutrient proxies.

     
    more » « less
  3. Abstract

    Environmentally driven variability in the elemental stoichiometry of ocean plankton plays a key role in ocean biogeochemical processes. Recent studies have identified clear regional variability in C:N:P, but less is known about the environmental regulation of diel variability in plankton elemental stoichiometry. Here, we quantified the amplitude of the diel variability in C:N of surface ocean particles (<30 μm,C:Namp) across large latitudinal gradients in the Indian and Atlantic Oceans. We commonly observed diel oscillations in C:N and biome‐specific variability inC:Namp. Temperature emerged as the strongest predictor ofC:Namp, relative to the supply of nitrate. We propose thatC:Nampis positively related to photosynthesis and respiration and thus phytoplankton growth rates. We find that independent growth rate proxies and an ecosystem model support this hypothesis. In addition, the temperature sensitivity ofC:Namphas aQ10of 1.78 corroborating studies of phytoplankton growth rates. Surface communities across the Indian Ocean transect had a very small dependency on nitrate, whereas recycled nitrogen sources were by far the most preferred and the ratio of recycled‐N:nitrate utilization increased with increasingC:Namp. To predict future changes inC:Namp, we combined our statistical model with data from the fifth Coupled Model Intercomparison Project for the years 1990 and 2090. The results suggest that future rising temperatures will yield increasedC:Namp. Collectively, our results imply that rising surface ocean temperatures lead to elevated phytoplankton growth rates supported by recycled nutrients.

     
    more » « less
  4. Abstract

    Surface ocean marine dissolved organic matter (DOM) serves as an important reservoir of carbon (C), nitrogen (N), and phosphorus (P) in the global ocean, and is produced and consumed by both autotrophic and heterotrophic communities. While prior work has described distributions of dissolved organic carbon (DOC) and nitrogen (DON) concentrations, our understanding of DOC:DON:DOP stoichiometry in the global surface ocean has been limited by the availability of DOP concentration measurements. Here, we estimate mean surface ocean bulk and semi‐labile DOC:DON:DOP stoichiometry in biogeochemically and geographically defined regions using newly available marine DOM concentration databases. Global mean surface ocean bulk (C:N:P = 387:26:1) and semi‐labile (C:N:P = 179:20:1) DOM stoichiometries are higher than Redfield stoichiometry, with semi‐labile DOM stoichiometry similar to that of global mean surface ocean particulate organic matter (C:N:P = 160:21:1) reported in a recent compilation. DOM stoichiometry varies across ocean basins, ranging from 251:17:1 to 638:43:1 for bulk and 83:15:1 to 414:49:1 for semi‐labile DOM C:N:P, respectively. Surface ocean DOP concentration exhibits larger relative changes than DOC and DON, driving surface ocean gradients in DOC:DON:DOP stoichiometry. Inferred autotrophic consumption of DOP helps explain intra‐ and inter‐basin patterns of marine DOM C:N:P stoichiometry, with regional patterns of water column denitrification and iron supply influencing the biogeochemical conditions favoring DOP use as an organic nutrient. Specifically, surface ocean marine DOM exhibits increasingly P‐depleted stoichiometries from east to west in the Pacific and from south to north in the Atlantic, consistent with patterns of increasing P stress and alleviated iron stress.

     
    more » « less
  5. Abstract

    The elemental ratios of carbon, nitrogen, and phosphorus (C:N:P) within organic matter play a key role in coupling biogeochemical cycles in the global ocean. At the cellular level, these ratios are controlled by physiological responses to the environment. But linking these cellular‐level processes to global biogeochemical cycles remains challenging. We present a novel model framework that combines knowledge of phytoplankton cellular functioning with global scale hydrographic data, to assess the role of variable carbon‐to‐phosphorus ratios (RC:P) on the distribution of export production. We implement a trait‐based mechanistic model of phytoplankton growth into a global biogeochemical inverse model to predict global patterns of phytoplankton physiology and stoichiometry that are consistent with both biological growth mechanisms and hydrographic carbon and nutrient observations. We compare this model to empirical parameterizations relatingRC:Pto temperature or phosphate concentration. We find that the way the model represents variable stoichiometry affects the magnitude and spatial pattern of carbon export, with globally integrated fluxes varying by up to 10% (1.3 Pg C yr−1) across models. Despite these differences, all models exhibit strong consistency with observed dissolved inorganic carbon and phosphate concentrations (R2 > 0.9), underscoring the challenge of selecting the most accurate model structure. We also find that the choice of parameterization impacts the capacity of changingRC:Pto buffer predicted export declines. Our novel framework offers a pathway by which additional biological information might be used to reduce the structural uncertainty in model representations of phytoplankton stoichiometry, potentially improving our capacity to project future changes.

     
    more » « less