skip to main content


Title: Female novelty and male status dynamically modulate ejaculate expenditure and seminal fluid proteome over successive matings in red junglefowl
Abstract

Theory predicts that males will strategically invest in ejaculates according to the value of mating opportunities. While strategic sperm allocation has been studied extensively, little is known about concomitant changes in seminal fluid (SF) and its molecular composition, despite increasing evidence that SF proteins (SFPs) are fundamental in fertility and sperm competition. Here, we show that in male red junglefowl,Gallus gallus, along with changes in sperm numbers and SF investment, SF composition changed dynamically over successive matings with a first female, immediately followed by mating with a second, sexually novel female. The SF proteome exhibited a pattern of both protein depletion and enrichment over successive matings, including progressive increases in immunity and plasma proteins. Ejaculates allocated to the second female had distinct proteomic profiles, where depletion of many SFPs was compensated by increased investment in others. This response was partly modulated by male social status: when mating with the second, novel female, subdominants (but not dominants) preferentially invested in SFPs associated with sperm composition, which may reflect status-specific differences in mating rates, sperm maturation and sperm competition. Global proteomic SF analysis thus reveals that successive matings trigger rapid, dynamic SFP changes driven by a combination of depletion and strategic allocation.

 
more » « less
Award ID(s):
1655840
NSF-PAR ID:
10153289
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
9
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ample sperm production is essential for successful male reproduction in many species. The amount of sperm a male can produce is typically constrained by the size of his testes, which can be energetically expensive to grow and maintain. Although the economics of ejaculate allocation has been the focus of much theoretical and empirical literature, relatively little attention has been paid to individual adult variation and plasticity at the source of sperm production, the testes themselves. We experimentally address this issue using the insectNarnia femorataStål (Hemiptera: Coreidae). We established the metabolic cost of testicular tissue and then quantified variation in individual testes mass in response to multiple mate quality and quantity treatments.We uncovered extreme variation across individuals and considerable short‐term effects of mating activity on testes dry mass. Importantly, the observed variation in testes mass was associated with notable fitness consequences; females paired with males with larger testes had greater hatching success. Overall, pairing with a female resulted in a 11% reduction indrytestes mass. Despite this apparent considerable mating investment, we found no evidence of strategic allocation to higher quality females or longer‐term changes in testes mass. The dynamic nature of testes mass and its metabolic cost is vital to consider in the context of re‐mating rates, polyandry benefits and general mating system dynamics both in this species and more broadly.

     
    more » « less
  2. Abstract Background

    Ever since Darwin, evolutionary biologists have studied sexual selection driving differences in appearance and behaviour between males and females. An unchallenged paradigm in such studies is that one sex (usually the male) signals its quality as a mate to the other sex (usually the female), who is choosy in accepting a partner. Here, we hypothesize that in polygamous species these roles change dynamically with the mating status of males and females, depending on direct reproductive costs and benefits of multiple matings, and on sperm competition. We test this hypothesis by assessing fitness costs and benefits of multiple matings in both males and females in a polygamous moth species, as in moths not males but females are the signalers and males are the responders.

    Results

    We found that multiple matings confer fitness costs and benefits for both sexes. Specifically, the number of matings did not affect the longevity of males or females, but only 67% of the males and 14% of the females mated successfully in all five nights. In addition, the female’s reproductive output increased with multiple matings, although when paired with a new virgin male every night, more than 3 matings decreased her reproductive output, so that the Bateman gradient for females fit a quadratic model better than a linear model. The male’s reproductive success was positively affected by the number of matings and a linear regression line best fit the data. Simulations of the effect of sperm competition showed that increasing last-male paternity increases the steepness of the male Bateman gradient and thus the male’s relative fitness gain from additional mating. Irrespective of last-male paternity value, the female Bateman gradient is steeper than the male one for up to three matings.

    Conclusion

    Our results suggest that choosiness in moths may well change throughout the mating season, with males being more choosy early in the season and females being more choosy after having mated at least three times. This life-history perspective on the costs and benefits of multiple matings for both sexes sheds new light on sexual selection forces acting on sexual signals and responses.

     
    more » « less
  3. Abstract

    Globally invasiveAedes aegyptidisseminate numerous arboviruses that impact human health. One promising method to controlAe. aegyptipopulations is transinfection withWolbachia pipientis, which naturally infects ~40–52% of insects but notAe. aegypti. Transinfection ofAe. aegyptiwith the wMelWolbachiastrain induces cytoplasmic incompatibility (CI), allows infected individuals to invade native populations, and inhibits transmission of medically relevant arboviruses by females. Female insects undergo post-mating physiological and behavioral changes—referred to as the female post-mating response (PMR)—required for optimal fertility. PMRs are typically elicited by male seminal fluid proteins (SFPs) transferred with sperm during mating but can be modified by other factors, including microbiome composition.Wolbachiahas modest effects onAe. aegyptifertility, but its influence on other PMRs is unknown. Here, we show thatWolbachiainfluences female fecundity, fertility, and re-mating incidence and significantly extends the longevity of virgin females. Using proteomic methods to examine the seminal proteome of infected males, we found thatWolbachiamoderately affects SFP composition. However, we identified 125 paternally transferredWolbachiaproteins, but the CI factor proteins (Cifs) were not among them. Our findings indicate thatWolbachiainfection ofAe. aegyptialters female PMRs, potentially influencing control programs that utilizeWolbachia-infected individuals.

     
    more » « less
  4. Abstract

    Oocyte composition can directly influence offspring fitness, particularly in oviparous species such as most insects, where it is the primary form of parental investment. Oocyte production is also energetically costly, dependent on female condition and responsive to external cues. Here, we investigated whether mating influences mature oocyte composition inDrosophila melanogasterusing a quantitative proteomic approach. Our analyses robustly identified 4,485 oocyte proteins and revealed that stage-14 oocytes from mated females differed significantly in protein composition relative to oocytes from unmated females. Proteins forming a highly interconnected network enriched for translational machinery and transmembrane proteins were increased in oocytes from mated females, including calcium binding and transport proteins. This mating-induced modulation of oocyte maturation was also significantly associated with proteome changes that are known to be triggered by egg activation. We propose that these compositional changes are likely to have fitness consequences and adaptive implications given the importance of oocyte protein composition, rather than active gene expression, to the maternal-to-zygotic transition and early embryogenesis.

     
    more » « less
  5. Abstract

    FemaleDrosophila melanogasterfrequently mate with multiple males in nature as shown through parentage analysis. Although polyandry is well documented, we know little about the timing between mating events in wild Drosophila populations due to the challenge of following behaviours of individual females. In this study, we used the presence of a male reproductive protein that is transferred to the female during mating (Sex Peptide,SP) to determine whether she had recently mated. We sampled females throughout the day, conducted control matings to determine the decay rate ofSPwithin the female reproductive tract and performed computer simulations to fit the observed proportion of mated females to a nonhomogenous Poisson process that defined the expected time between successive matings for a given female. In our control matings, 100% of mated females tested positive forSP0.5 h after the start of mating (ASM), but only 24% tested positive 24 hASM. Overall, 35% of wild‐caught females tested positive for the presence ofSP. Fitting our observed data to our simple nonhomogenous Poisson model provided the inference that females are mating, on average, approximately every 27 h (with 95% credibility interval 23–31 h). Thus, it appears that females are mating a bit less frequently that once per day in this natural population and that mating events tend to occur either early in the morning or late in the afternoon.

     
    more » « less