Title: Accurate regional influenza epidemics tracking using Internet search data
Abstract Accurate, high-resolution tracking of influenza epidemics at the regional level helps public health agencies make informed and proactive decisions, especially in the face of outbreaks. Internet users’ online searches offer great potential for the regional tracking of influenza. However, due to the complex data structure and reduced quality of Internet data at the regional level, few established methods provide satisfactory performance. In this article, we propose a novel method named ARGO2 (2-step Augmented Regression with GOogle data) that efficiently combines publicly available Google search data at different resolutions (national and regional) with traditional influenza surveillance data from the Centers for Disease Control and Prevention (CDC) for accurate, real-time regional tracking of influenza. ARGO2 gives very competitive performance across all US regions compared with available Internet-data-based regional influenza tracking methods, and it has achieved 30% error reduction over the best alternative method that we numerically tested for the period of March 2009 to March 2018. ARGO2 is reliable and robust, with the flexibility to incorporate additional information from other sources and resolutions, making it a powerful tool for regional influenza tracking, and potentially for tracking other social, economic, or public health events at the regional or local level. more »« less
Yang, Shihao; Ning, Shaoyang; Kou, S. C.
(, Scientific Reports)
null
(Ed.)
Abstract For epidemics control and prevention, timely insights of potential hot spots are invaluable. Alternative to traditional epidemic surveillance, which often lags behind real time by weeks, big data from the Internet provide important information of the current epidemic trends. Here we present a methodology, ARGOX (Augmented Regression with GOogle data CROSS space), for accurate real-time tracking of state-level influenza epidemics in the United States. ARGOX combines Internet search data at the national, regional and state levels with traditional influenza surveillance data from the Centers for Disease Control and Prevention, and accounts for both the spatial correlation structure of state-level influenza activities and the evolution of people’s Internet search pattern. ARGOX achieves on average 28% error reduction over the best alternative for real-time state-level influenza estimation for 2014 to 2020. ARGOX is robust and reliable and can be potentially applied to track county- and city-level influenza activity and other infectious diseases.
Abstract Wearing masks reduces the spread of COVID-19, but compliance with mask mandates varies across individuals, time, and space. Accurate and continuous measures of mask wearing, as well as other health-related behaviors, are important for public health policies. This article presents a novel approach to estimate mask wearing using geotagged Twitter image data from March through September, 2020 in the United States. We validate our measure using public opinion survey data and extend the analysis to investigate county-level differences in mask wearing. We find a strong association between mask mandates and mask wearing—an average increase of 20%. Moreover, this association is greatest in Republican-leaning counties. The findings have important implications for understanding how governmental policies shape and monitor citizen responses to public health crises.
Perlis, Roy H; Ognyanova, Katherine; Uslu, Ata; Lunz_Trujillo, Kristin; Santillana, Mauricio; Druckman, James N; Baum, Matthew A; Lazer, David
(, JAMA Network Open)
ImportanceTrust in physicians and hospitals has been associated with achieving public health goals, but the increasing politicization of public health policies during the COVID-19 pandemic may have adversely affected such trust. ObjectiveTo characterize changes in US adults’ trust in physicians and hospitals over the course of the COVID-19 pandemic and the association between this trust and health-related behaviors. Design, Setting, and ParticipantsThis survey study uses data from 24 waves of a nonprobability internet survey conducted between April 1, 2020, and January 31, 2024, among 443 455 unique respondents aged 18 years or older residing in the US, with state-level representative quotas for race and ethnicity, age, and gender. Main Outcome and MeasureSelf-report of trust in physicians and hospitals; self-report of SARS-CoV-2 and influenza vaccination and booster status. Survey-weighted regression models were applied to examine associations between sociodemographic features and trust and between trust and health behaviors. ResultsThe combined data included 582 634 responses across 24 survey waves, reflecting 443 455 unique respondents. The unweighted mean (SD) age was 43.3 (16.6) years; 288 186 respondents (65.0%) reported female gender; 21 957 (5.0%) identified as Asian American, 49 428 (11.1%) as Black, 38 423 (8.7%) as Hispanic, 3138 (0.7%) as Native American, 5598 (1.3%) as Pacific Islander, 315 278 (71.1%) as White, and 9633 (2.2%) as other race and ethnicity (those who selected “Other” from a checklist). Overall, the proportion of adults reporting a lot of trust for physicians and hospitals decreased from 71.5% (95% CI, 70.7%-72.2%) in April 2020 to 40.1% (95% CI, 39.4%-40.7%) in January 2024. In regression models, features associated with lower trust as of spring and summer 2023 included being 25 to 64 years of age, female gender, lower educational level, lower income, Black race, and living in a rural setting. These associations persisted even after controlling for partisanship. In turn, greater trust was associated with greater likelihood of vaccination for SARS-CoV-2 (adjusted odds ratio [OR], 4.94; 95 CI, 4.21-5.80) or influenza (adjusted OR, 5.09; 95 CI, 3.93-6.59) and receiving a SARS-CoV-2 booster (adjusted OR, 3.62; 95 CI, 2.99-4.38). Conclusions and RelevanceThis survey study of US adults suggests that trust in physicians and hospitals decreased during the COVID-19 pandemic. As lower levels of trust were associated with lesser likelihood of pursuing vaccination, restoring trust may represent a public health imperative.
Azimi, Iman; Takalo-Mattila, Janne; Anzanpour, Arman; Rahmani, Amir M; Soininen, Juha-Pekka; Liljeberg, Pasi
(, 2018 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE))
Remote health monitoring is a powerful tool to provide preventive care and early intervention for populations-at-risk. Such monitoring systems are becoming available nowadays due to recent advancements in Internet-of-Things (IoT) paradigms, enabling ubiquitous monitoring. These systems require a high level of quality in attributes such as availability and accuracy due to patients critical conditions in the monitoring. Deep learning methods are very promising in such health applications to obtain a satisfactory performance, where a considerable amount of data is available. These methods are perfectly positioned in the cloud servers in a centralized cloud-based IoT system. However, the response time and availability of these systems highly depend on the quality of Internet connection. On the other hand, smart gateway devices are unable to implement deep learning methods (such as training models) due to their limited computational capacities. In our previous work, we proposed a hierarchical computing architecture (HiCH), where both edge and cloud computing resources were efficiently exploited, allocating heavy tasks of a conventional machine learning method to the cloud servers and outsourcing the hypothesis function to the edge. Due to this local decision making, the availability of the system was highly improved. In this paper, we investigate the feasibility of deploying the Convolutional Neural Network (CNN) based classification model as an example of deep learning methods in this architecture. Therefore, the system benefits from the features of the HiCH and the CNN, ensuring a high-level availability and accuracy. We demonstrate a real-time health monitoring for a case study on ECG classifications and evaluate the performance of the system in terms of response time and accuracy.
Nekorchuk, Dawn M; Bharadwaja, Anita; Simonson, Sean; Ortega, Emma; França, Caio_M B; Dinh, Emily; Reik, Rebecca; Burkholder, Rachel; Wimberly, Michael C
(, JAMIA Open)
Abstract ObjectivesWest Nile virus (WNV) is the most common mosquito-borne disease in the United States. Predicting the location and timing of outbreaks would allow targeting of disease prevention and mosquito control activities. Our objective was to develop software (ArboMAP) for routine WNV forecasting using public health surveillance data and meteorological observations. Materials and MethodsArboMAP was implemented using an R markdown script for data processing, modeling, and report generation. A Google Earth Engine application was developed to summarize and download weather data. Generalized additive models were used to make county-level predictions of WNV cases. ResultsArboMAP minimized the number of manual steps required to make weekly forecasts, generated information that was useful for decision-makers, and has been tested and implemented in multiple public health institutions. Discussion and ConclusionRoutine prediction of mosquito-borne disease risk is feasible and can be implemented by public health departments using ArboMAP.
@article{osti_10153370,
place = {Country unknown/Code not available},
title = {Accurate regional influenza epidemics tracking using Internet search data},
url = {https://par.nsf.gov/biblio/10153370},
DOI = {10.1038/s41598-019-41559-6},
abstractNote = {Abstract Accurate, high-resolution tracking of influenza epidemics at the regional level helps public health agencies make informed and proactive decisions, especially in the face of outbreaks. Internet users’ online searches offer great potential for the regional tracking of influenza. However, due to the complex data structure and reduced quality of Internet data at the regional level, few established methods provide satisfactory performance. In this article, we propose a novel method named ARGO2 (2-step Augmented Regression with GOogle data) that efficiently combines publicly available Google search data at different resolutions (national and regional) with traditional influenza surveillance data from the Centers for Disease Control and Prevention (CDC) for accurate, real-time regional tracking of influenza. ARGO2 gives very competitive performance across all US regions compared with available Internet-data-based regional influenza tracking methods, and it has achieved 30% error reduction over the best alternative method that we numerically tested for the period of March 2009 to March 2018. ARGO2 is reliable and robust, with the flexibility to incorporate additional information from other sources and resolutions, making it a powerful tool for regional influenza tracking, and potentially for tracking other social, economic, or public health events at the regional or local level.},
journal = {Scientific Reports},
volume = {9},
number = {1},
publisher = {Nature Publishing Group},
author = {Ning, Shaoyang and Yang, Shihao and Kou, S_C},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.