skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Maritime Continent water cycle regulates low-latitude chokepoint of global ocean circulation
Abstract The Maritime Continent (MC) is a low-latitude chokepoint of the world oceans with the Indonesian throughflow (ITF) linking the Indo-Pacific oceans, influencing global ocean circulation, climate, and biogeochemistry. While previous studies suggested that South-China-Sea freshwaters north of the MC intruding the Indonesian Seas weaken the ITF during boreal winter, the impact of the MC water cycle on the ITF has not been investigated. Here we use ocean-atmosphere-land satellite observations to reveal the dominant contribution of the MC monsoonal water cycle to boreal winter−spring freshening in the Java Sea through local precipitation and runoff from Kalimantan, Indonesia. We further demonstrate that the freshening corresponds to a reduced southward pressure gradient that would weaken the ITF. Therefore, the MC water cycle plays a critical role regulating ITF seasonality. The findings have strong implications to longer-term variations of the ITF associated with the variability and change of Indo-Pacific climate and MC water cycle.  more » « less
Award ID(s):
1736285
PAR ID:
10153398
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
10
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Multidecadal variability of the Indonesian Throughflow (ITF) is crucial for the Indo-Pacific and global climate due to significant interbasin exchanges of heat and freshwater. Previous studies suggest that both wind and buoyancy forcing may drive ITF variability, but the role of precipitation and salinity effect in the variability of ITF on multidecadal time scales remains largely unexplored. Here, we investigate the multidecadal changes and long-term trend of the ITF transport during the past six decades, with a focus on the role of precipitation and salinity effect. The diverse datasets consistently indicate a substantial upward trend in the halosteric component of geostrophic transport of ITF in the outflow region at 114°E during the six decades. We find that the meridional differences of the salinity trend in the outflow region explain the increasing trend of the halosteric component of ITF transport. On a larger scale, the tropical western Pacific Ocean and Indonesian seas have experienced significant freshening, which has strengthened the Indo-Pacific pressure gradient and thus enhanced the ITF. In contrast, the equatorial trade wind in the western Pacific Ocean has weakened over recent decades, implying that changes in wind forcing have contributed to weakening the ITF. The combined effect of strengthened halosteric and weakened thermosteric components has resulted in a weak strengthening for the total ITF with large uncertainties. Although both the thermosteric and halosteric components are associated with natural climate modes, our results suggest that the importance of salinity effect is likely increasing given the enhanced water cycle under global warming. 
    more » « less
  2. Abstract The Makassar Strait, the main passageway of the Indonesian Throughflow (ITF), is an important component of Indo‐Pacific climate through its inter‐basin redistribution of heat and freshwater. Observational studies suggest that wind‐driven freshwater advection from the marginal seas into the Makassar Strait modulates the strait's surface transport. However, direct observations are too short (<15 years) to resolve variability on decadal timescales. Here we use a series of global ocean simulations to assess the advected freshwater contributions to ITF transport across a range of timescales. The simulated seasonal and interannual freshwater dynamics are consistent with previous studies. On decadal timescales, we find that wind‐driven advection of South China Sea (SCS) waters into the Makassar Strait modulates upper‐ocean ITF transport. Atmospheric circulation changes associated with Pacific decadal variability appear to drive this mechanism via Pacific lower‐latitude western boundary current interactions that affect the SCS circulation. 
    more » « less
  3. null (Ed.)
    The Indonesian Throughflow (ITF) is a critical part of the global thermohaline conveyor. It plays a key role in transporting heat from the equatorial Pacific (the Indo-Pacific Warm Pool) to the Indian Ocean and exerts a major control on global climate. The complex tectonic history of the Indonesian Archipelago, a result of continued northward motion and impingement of the Australasian Plate into the Southeast Asian part of the Eurasian Plate, makes it difficult to reconstruct long-term (i.e., million year) ITF history from sites within the archipelago. The best areas to investigate ITF history are downstream in the Indian Ocean, either in the deep ocean away from strong tectonic deformation or along proximal passive margins that are directly under the influence of the ITF. Although previous Ocean Drilling Program and Deep Sea Drilling Project deepwater cores recovered in the Indian Ocean have been used to chart Indo-Pacific Warm Pool influence and, by proxy, ITF variability, these sections lack direct biogeographic and sedimentological evidence of the ITF. International Ocean Discovery Program Expedition 356 will drill a transect of cores over 10° latitude on the northwest shelf (NWS) of Australia to obtain a 5 m.y. record of ITF, Indo-Pacific Warm Pool, and climate evolution that has the potential to match orbital-scale deep-sea records in its resolution. Coring the NWS will reveal a detailed shallow-water history of ITF variability and its relationship to climate. It will allow us to understand the history of the Australian monsoon and its variability, a system whose genesis is thought to be related to the initiation of the East Asian monsoon and is hypothesized to have been in place since the Pliocene or earlier. It also will lead to a better understanding of the nature and timing of the development of aridity on the Australian continent. Detailed paleobathymetric and stratigraphic data from the transect will also allow subsidence curves to be constructed to constrain the spatial and temporal patterns of vertical motions caused by the interaction between plate motion and convection within the Earth’s mantle, known as dynamic topography. The NWS is an ideal location to study this phenomenon because it is positioned on the fastest moving continent since the Eocene, on the edge of the degree two geoid anomaly. Accurate subsidence analyses over 10° of latitude can resolve whether northern Australia is moving with/over a time-transient or long-term stationary downwelling within the mantle, thereby vastly improving our understanding of deep-Earth dynamics and their impact on surficial processes. 
    more » « less
  4. The Indonesian Throughflow (ITF) is a critical part of the global thermohaline conveyor. It plays a key role in transporting heat from the equatorial Pacific (the Indo-Pacific Warm Pool) to the Indian Ocean and exerts a major control on global climate. The complex tectonic history of the Indonesian archipelago, a result of continued northward motion and impingement of the Australasian plate into the southeast Asian part of the Eurasian plate, makes it difficult to reconstruct long-term (i.e., million year) ITF history from sites within the archipelago. The best areas to investigate ITF history are downstream in the Indian Ocean, either in the deep ocean away from strong tectonic deformation or along proximal passive margins that are directly under the influence of the ITF. Although previous Ocean Drilling Program and Deep Sea Drilling Project deep-water cores recovered in the Indian Ocean have been used to chart Indo-Pacific Warm Pool influence and, by proxy, ITF variability, these sections lack direct biogeographic and sedimentological evidence of the ITF. International Ocean Discovery Program Expedition 356 cored seven sites covering a latitudinal range of 29°S–18°S off the northwest coast of Australia to obtain a 5 My record of the ITF, Indo-Pacific Warm Pool, and climate evolution that has the potential to match orbital-scale deep-sea records in its resolution. The material recovered will allow us to describe the history of the Australian monsoon and its variability, a system whose genesis is thought to be related to the initiation of the East Asian monsoon and is hypothesized to have been in place since the Pliocene or earlier. It also will lead to a better understanding of the nature and timing of the development of aridity on the Australian continent. Detailed paleobathymetric and stratigraphic data from the transect will also allow subsidence curves to be constructed to constrain the spatial and temporal patterns of vertical motions caused by the interaction between plate motion and convection within the Earth’s mantle, known as dynamic topography. The northwest shelf is an ideal location to study this phenomenon because it is positioned on the fastest moving continent since the Eocene, on the edge of the degree 2 geoid anomaly. Accurate subsidence analyses over 10° of latitude can resolve whether northern Australia is moving with or over either a time-transient or long-term stationary downwelling within the mantle, thereby vastly improving our understanding of deep-Earth dynamics and their impact on surficial processes. 
    more » « less
  5. The Indonesian Throughflow (ITF) is a critical part of the global thermohaline conveyor. It plays a key role in transporting heat from the equatorial Pacific (the Indo-Pacific Warm Pool) to the Indian Ocean and exerts a major control on global climate. The complex tectonic history of the Indonesian archipelago, a result of continued northward motion and impingement of the Australasian plate into the southeast Asian part of the Eurasian plate, makes it difficult to reconstruct long-term (i.e., million year) ITF history from sites within the archipelago. The best areas to investigate ITF history are downstream in the Indian Ocean, either in the deep ocean away from strong tectonic deformation or along proximal passive margins that are directly under the influence of the ITF. Although previous Ocean Drilling Program and Deep Sea Drilling Project deep-water cores recovered in the Indian Ocean have been used to chart Indo-Pacific Warm Pool influence and, by proxy, ITF variability, these sections lack direct biogeographic and sedimentological evidence of the ITF. International Ocean Discovery Program Expedition 356 cored seven sites covering a latitudinal range of 29°S–18°S off the northwest coast of Australia to obtain a 5 My record of the ITF, Indo-Pacific Warm Pool, and climate evolution that has the potential to match orbital-scale deep-sea records in its resolution. The material recovered will allow us to describe the history of the Australian monsoon and its variability, a system whose genesis is thought to be related to the initiation of the East Asian monsoon and is hypothesized to have been in place since the Pliocene or earlier. It also will lead to a better understanding of the nature and timing of the development of aridity on the Australian continent. Detailed paleobathymetric and stratigraphic data from the transect will also allow subsidence curves to be constructed to constrain the spatial and temporal patterns of vertical motions caused by the interaction between plate motion and convection within the Earth’s mantle, known as dynamic topography. The northwest shelf is an ideal location to study this phenomenon because it is positioned on the fastest moving continent since the Eocene, on the edge of the degree 2 geoid anomaly. Accurate subsidence analyses over 10° of latitude can resolve whether northern Australia is moving with or over either a time-transient or long-term stationary downwelling within the mantle, thereby vastly improving our understanding of deep-Earth dynamics and their impact on surficial processes. 
    more » « less