skip to main content


Title: The Role of Precipitation and Salinity Effect in Multidecadal Changes and Long-Term Trend of the Indonesian Throughflow
Abstract

Multidecadal variability of the Indonesian Throughflow (ITF) is crucial for the Indo-Pacific and global climate due to significant interbasin exchanges of heat and freshwater. Previous studies suggest that both wind and buoyancy forcing may drive ITF variability, but the role of precipitation and salinity effect in the variability of ITF on multidecadal time scales remains largely unexplored. Here, we investigate the multidecadal changes and long-term trend of the ITF transport during the past six decades, with a focus on the role of precipitation and salinity effect. The diverse datasets consistently indicate a substantial upward trend in the halosteric component of geostrophic transport of ITF in the outflow region at 114°E during the six decades. We find that the meridional differences of the salinity trend in the outflow region explain the increasing trend of the halosteric component of ITF transport. On a larger scale, the tropical western Pacific Ocean and Indonesian seas have experienced significant freshening, which has strengthened the Indo-Pacific pressure gradient and thus enhanced the ITF. In contrast, the equatorial trade wind in the western Pacific Ocean has weakened over recent decades, implying that changes in wind forcing have contributed to weakening the ITF. The combined effect of strengthened halosteric and weakened thermosteric components has resulted in a weak strengthening for the total ITF with large uncertainties. Although both the thermosteric and halosteric components are associated with natural climate modes, our results suggest that the importance of salinity effect is likely increasing given the enhanced water cycle under global warming.

 
more » « less
Award ID(s):
1851316
PAR ID:
10487357
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Climate
Volume:
37
Issue:
4
ISSN:
0894-8755
Format(s):
Medium: X Size: p. 1317-1331
Size(s):
p. 1317-1331
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Makassar Strait, the main passageway of the Indonesian Throughflow (ITF), is an important component of Indo‐Pacific climate through its inter‐basin redistribution of heat and freshwater. Observational studies suggest that wind‐driven freshwater advection from the marginal seas into the Makassar Strait modulates the strait's surface transport. However, direct observations are too short (<15 years) to resolve variability on decadal timescales. Here we use a series of global ocean simulations to assess the advected freshwater contributions to ITF transport across a range of timescales. The simulated seasonal and interannual freshwater dynamics are consistent with previous studies. On decadal timescales, we find that wind‐driven advection of South China Sea (SCS) waters into the Makassar Strait modulates upper‐ocean ITF transport. Atmospheric circulation changes associated with Pacific decadal variability appear to drive this mechanism via Pacific lower‐latitude western boundary current interactions that affect the SCS circulation.

     
    more » « less
  2. Abstract

    The Makassar Strait throughflow (MST) constitutes a significant component of the Indonesian throughflow (ITF) and plays a pivotal role in the interbasin exchange between the Indian and Pacific Oceans. While previous studies have suggested that the buoyancy forcing plays a role in influencing the seasonality of the MST, the quantitative contribution of salinity effect on MST seasonality remains unclear. Here we use the measurements from the Monitoring ITF program and the Global Ocean Physics Reanalysis product to investigate the seasonality of MST and quantify the impact of the salinity effect. We find that the halosteric variability due to the salinity effect contributes to approximately (69.6 ± 11.7) % of the total seasonal variability of surface dynamic height gradient along the Makassar Strait, and dominates the seasonality of the upper layer MST. The primary drivers for freshwater forcing are horizontal advection through the Karimata Strait and precipitation in the Java Sea.

     
    more » « less
  3. Abstract

    Climate models consistently project a robust weakening of the Indonesian Throughflow (ITF) and the Atlantic meridional overturning circulation (AMOC) in response to greenhouse gas forcing. Previous studies of ITF variability have largely focused on local processes in the Indo‐Pacific Basin. Here, we propose that much of the centennial‐scale ITF weakening is dynamically linked to changes in the Atlantic Basin and communicated between basins via wave processes. In response to an AMOC slowdown, the Indian Ocean develops a northward surface transport anomaly that converges mass and modifies sea surface height in the Indian Ocean, which weakens the ITF. We illustrate these dynamic interbasin connections using a 1.5‐layer reduced gravity model and then validate the responses in a comprehensive general circulation model. Our results highlight the importance of transient volume exchanges between the Atlantic and Indo‐Pacific basins in regulating the global ocean circulation in a changing climate.

     
    more » « less
  4. Abstract

    The Maritime Continent (MC) is a low-latitude chokepoint of the world oceans with the Indonesian throughflow (ITF) linking the Indo-Pacific oceans, influencing global ocean circulation, climate, and biogeochemistry. While previous studies suggested that South-China-Sea freshwaters north of the MC intruding the Indonesian Seas weaken the ITF during boreal winter, the impact of the MC water cycle on the ITF has not been investigated. Here we use ocean-atmosphere-land satellite observations to reveal the dominant contribution of the MC monsoonal water cycle to boreal winter−spring freshening in the Java Sea through local precipitation and runoff from Kalimantan, Indonesia. We further demonstrate that the freshening corresponds to a reduced southward pressure gradient that would weaken the ITF. Therefore, the MC water cycle plays a critical role regulating ITF seasonality. The findings have strong implications to longer-term variations of the ITF associated with the variability and change of Indo-Pacific climate and MC water cycle.

     
    more » « less
  5. Abstract

    The Indonesian Throughflow (ITF) serves as the only tropical branch of the Great Ocean Conveyer Belt, and plays an important role in Indo-Pacific Basin interactions. By calculating the heat budget during single and triple La Niña events (1973–1976, 1998–2000, 2020–2023), we quantified the contribution of enhanced ITF heat transport to prolonging the recharge process during triple La Niña events. During triple La Niña events, the accumulated heat transported by the ITF is about −15.01 ZJ (more than twice that for single events), nearly offsetting the positive contribution of net heat flux from the atmosphere over the Pacific Ocean. Single La Niña events are confined to thermal processes within the Pacific Ocean, while triple events are products of basin interactions, and the ITF serves as a crucial oceanic link between the tropical Indian and Pacific Oceans. The enhanced heat transport of the ITF is concentrated in the subsurface layer (100–200 m), significantly during the second year of a triple La Niña event. The accumulation of enhanced ITF heat transport in the subsurface layer effectively expands the recharge–discharge area from the western Pacific to the eastern Indian Ocean, with the ensuing discharge process of the tropical Indian Ocean along with sustained La Niña conditions in the Pacific Ocean.

     
    more » « less