skip to main content


Title: Glass transition temperature from the chemical structure of conjugated polymers
Abstract

The glass transition temperature (Tg) is a key property that dictates the applicability of conjugated polymers. TheTgdemarks the transition into a brittle glassy state, making its accurate prediction for conjugated polymers crucial for the design of soft, stretchable, or flexible electronics. Here we show that a single adjustable parameter can be used to build a relationship between theTgand the molecular structure of 32 semiflexible (mostly conjugated) polymers that differ drastically in aromatic backbone and alkyl side chain chemistry. An effective mobility value,ζ, is calculated using an assigned atomic mobility value within each repeat unit. The only adjustable parameter in the calculation ofζis the ratio of mobility between conjugated and non-conjugated atoms. We show thatζcorrelates strongly to theTg, and that this simple method predicts theTgwith a root-mean-square error of 13 °C for conjugated polymers with alkyl side chains.

 
more » « less
Award ID(s):
1921854
PAR ID:
10153442
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Organic semiconducting donor–acceptor polymers are promising candidates for stretchable electronics owing to their mechanical compliance. However, the effect of the electron‐donating thiophene group on the thermomechanical properties of conjugated polymers has not been carefully studied. Here, thin‐film mechanical properties are investigated for diketopyrrolopyrrole (DPP)‐based conjugated polymers with varying numbers of isolated thiophene moieties and sizes of fused thiophene rings in the polymer backbone. Interestingly, it is found that these thiophene units act as an antiplasticizer, where more isolated thiophene rings or bigger fused rings result in an increased glass transition temperature (Tg) of the polymer backbone, and consequently elastic modulus of the respective DPP polymers. Detailed morphological studies suggests that all samples show similar semicrystalline morphology. This antiplasticization effect also exists inpara‐azaquinodimethane‐based conjugated polymers, indicating that this can be a general trend for various conjugated polymer systems. Using the knowledge gained above, a new DPP‐based polymer with increased alkyl side chain density through attaching alky chains to the thiophene unit is engineered. The new DPP polymer demonstrates a record lowTg, and 50% lower elastic modulus than a reference polymer without side‐chain decorated on the thiophene unit. This work provides a general design rule for making low‐Tgconjugated polymers for stretchable electronics.

     
    more » « less
  2. Abstract

    Semiconducting donor–acceptor (D–A) polymers have attracted considerable attention toward the application of organic electronic and optoelectronic devices. However, a rational design rule for making semiconducting polymers with desired thermal and mechanical properties is currently lacking, which greatly limits the development of new polymers for advanced applications. Here, polydiketopyrrolopyrrole (PDPP)‐based D–A polymers with varied alkyl side‐chain lengths and backbone moieties are systematically designed, followed by investigating their thermal and thin film mechanical responses. The experimental results show a reduction in both elastic modulus and glass transition temperature (Tg) with increasing side‐chain length, which is further verified through coarse‐grained molecular dynamics simulations. Informed from experimental results, a mass‐per‐flexible bond model is developed to capture such observation through a linear correlation betweenTgand polymer chain flexibility. Using this model, a wide range of backboneTgover 80 °C and elastic modulus over 400 MPa can be predicted for PDPP‐based polymers. This study highlights the important role of side‐chain structure in influencing the thermomechanical performance of conjugated polymers, and provides an effective strategy to design and predictTgand elastic modulus of future new D–A polymers.

     
    more » « less
  3. Abstract

    The morphological stability of an organic photovoltaic (OPV) device is greatly affected by the dynamics of donors and acceptors occurring near the device's operational temperature. These dynamics can be quantified by the glass transition temperature (Tg) of conjugated polymers (CPs). Because flexible side chains possess much faster dynamics, the cleavage of the alkyl side chains will reduce chain dynamics, leading to a higherTg. In this work, theTgs for CPs are systematically studied with controlled side chain cleavage. Isothermal annealing of polythiophenes featuring thermally cleavable side chains at 140 °C, is found to remove more than 95% of alkyl side chains in 24 h, and raise the backboneTgfrom 23 to 75 °C. Coarse grain molecular dynamics simulations are used to understand theTgdependence on side chain cleavage. X‐ray scattering indicates that the relative degree of crystallization remains constantduring isothermal annealing process. The effective conjugation length is not influenced by thermal cleavage; however, the density of chromophore is doubled after the complete removal of alkyl side chains. The combined effect of enhancingTgand conserving crystalline structures during the thermal cleavage process can provide a pathway to improving the stability of optoelectronic properties in future OPV devices.

     
    more » « less
  4. Abstract

    Conjugated polymers consist of complex backbone structures and side‐chain moieties to meet various optoelectronic and processing requirements. Recent work on conjugated polymers has been devoted to studying the mechanical properties and developing new conjugated polymers with low modulus and high‐crack onset strain, while the thin film mechanical stability under long‐term external tensile strain is less investigated. Here we performed direct mechanical stress relaxation tests for both free‐standing and thin film floated on water surface on both high‐Tgand low‐Tgconjugated polymers, as well as a reference nonconjugated sample, polystyrene. We measured thin films with a range of film thickness from 38 to 179 nm to study the temperature and thickness effect on thin film relaxation, where an apparent enthalpy–entropy compensation effect for glassy polymer PS and PM6 thin films was observed. We also compared relaxation times across three different conjugated polymers and showed that both crystalline morphology and higher modulus reduce the relaxation rate besides higher glass transition temperature. Our work provides insights into the mechanical creep behavior of conjugated polymers, which will have an impact on the future design of stable functional organic electronics.

     
    more » « less
  5. ABSTRACT

    Thermomechanical properties of polymers highly depend on their glass transition temperature (Tg). Differential scanning calorimetry (DSC) is commonly used to measureTgof polymers. However, many conjugated polymers (CPs), especially donor–acceptor CPs (D–A CPs), do not show a clear glass transition when measured by conventional DSC using simple heat and cool scan. In this work, we discuss the origin of the difficulty for measuringTgin such type of polymers. The changes in specific heat capacity (Δcp) atTgwere accurately probed for a series of CPs by DSC. The results showed a significant decrease in Δcpfrom flexible polymer (0.28 J g−1K−1for polystyrene) to rigid CPs (10−3J g−1K−1for a naphthalene diimide‐based D–A CP). When a conjugation breaker unit (flexible unit) is added to the D–A CPs, we observed restoration of the ΔcpatTgby a factor of 10, confirming that backbone rigidity reduces the Δcp. Additionally, an increase in the crystalline fraction of the CPs further reduces Δcp. We conclude that the difficulties of determiningTgfor CPs using DSC are mainly due to rigid backbone and semicrystalline nature. We also demonstrate that physical aging can be used on DSC to help locate and confirm the glass transition for D‐A CPs with weak transition signals. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019, 57, 1635–1644

     
    more » « less